研究生: |
古佳儫 Koo, Jia-Hao |
---|---|
論文名稱: |
基於熱點圖標記法則發展元件佈局檢測系統應用於PCB之研究 A component layout inspection system based on the heat map marking rule applied to Printed Circuit Boards |
指導教授: |
黃文吉
Hwang, Wen-Jyi |
口試委員: |
董一志
Tung, Yi-Chih 尤信程 You, Shin-Cheng 黃文吉 Hwang, Wen-Jyi |
口試日期: | 2022/07/25 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 元件檢測 、物件偵測 、熱點圖 、深度學習 、邊緣運算裝置 |
英文關鍵詞: | CenterNet |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202201353 |
論文種類: | 學術論文 |
相關次數: | 點閱:99 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Printed Circuit Board(PCB)是電子元件的支撐體,上面存在許多元件,且每個元件都非常重要,因此工廠在生產PCB的過程中,品質管理也是一大考驗。元件佈局檢測是自動光學檢測(Automated Optical Inspection)中重要的檢測項目之一,透過元件佈局檢測能夠快速掌握整個PCB所有目標元件的座標位置,從這些座標中可以統計出目標元件數量以及位置是否正確,對於PCB的品質管理有極大的幫助。
本論文以CenterNet神經網路架構為基礎,開發一套元件佈局檢測系統,在 PCB的元件佈局檢測中,提出熱點圖(Heatmap)標記法則,使得各類元件在佈局檢測上都能有不錯的準確度,在多種類元件佈局檢測中,提出獨立特徵擷取層(Frontend)的架構,使模型具備彈性,不需要重新訓練,並且根據熱點圖標記法則,對於相同類型的熱點可以將特徵擷取層共享,來減少模型參數。
本論文使用的神經網路架構,簡化了CenterNet原本的模型,並對訓練好的模型進行優化,使其能在邊緣裝置上實現即時檢測,並維持不錯的準確度,使其能夠更方便應用於工廠的檢測。
[1] Crispin, A. J., and Rankov, V. "Automated inspection of PCB components using a genetic algorithm template-matching approach." The International Journal of Advanced Manufacturing Technology 35.3 (2007): 293-300.
[2] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[3] Law, H, and Deng, J. "Cornernet: Detecting objects as paired keypoints." Proceedings of the European conference on computer vision (ECCV). 2018.
[4] Zhou, X., Wang, D. and Krähenbühl, P. "Objects as points." arXiv preprint arXiv:1904.07850 (2019).
[5] Tsai, C. C. "A Study of Centernet Based AOI Assistant System Development." National Taiwan Normal University, 2021.
[6] Ren, S., He, K., Girshick, R., and Sun, J. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems 28 (2015).
[7] Zhang, S., Chi, C., Yao, Y., Lei, Z., and Li, S. Z. "Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.
[8] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., and Berg, A. C. "Ssd: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.
[9] Bochkovskiy, A., Wang, C. Y., and Liao, H. Y. M. "Yolov4: Optimal speed and accuracy of object detection." arXiv preprint arXiv:2004.10934 (2020).
[10] Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P. "Focal loss for dense object detection." Proceedings of the IEEE international conference on computer vision. 2017.
[11] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. "Feature pyramid networks for object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.