研究生: |
李映璇 Li, Ying-Hsuan |
---|---|
論文名稱: |
前濃縮系統連結氣相層析探討大蒜中硫化物與人體攝取呼氣變化之研究 Pre-concentration System Connected with Gas Chromatography to Investigate The Relationship between Sulfide in Garlic and Human Body Intake and Exhalation Changes |
指導教授: |
呂家榮
Lu, Chia-Jung |
口試委員: |
劉茂煌
Liu, Mao-Huang 宋蕙伶 Sung, Hui-Ling 呂家榮 Lu, Chia-Jung |
口試日期: | 2023/06/27 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 大蒜氣味 、硫化物 、人體呼氣 VOCs 、微型氣相層析儀 |
英文關鍵詞: | garlic odor, sulfide, human breath VOCs, Micro-GC |
研究方法: | 實驗設計法 、 現象學 、 主題分析 、 歷史研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202301034 |
論文種類: | 學術論文 |
相關次數: | 點閱:103 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關於植物氣味與人體呼氣中揮發性有機化合物(VOCs)的探討在近年來發展蓬勃,透過層析與質譜儀技術分析其中成分,可辨別植物當中形成特殊氣味來源的化合物,或研究人體代謝途徑及反應,在食品科學或醫學方面應用範圍都十分廣泛。
本研究將上述兩者結合,除了研究大蒜氣味成分,也對人體食用大蒜後的呼氣成分變化進行分析。過往的研究在採集大蒜氣味常採用頂空法(headspace)、固相微萃取(SPME)及超臨界流體萃取(SFE)等方法;人體呼氣也有使用以多孔洞樹酯及碳吸附劑所填充的吸附管(sorbent Tubes)採樣。本實驗室採用自製的多階式前縮管(multi-stage preconcentrator)結合六向閥進行採樣及進樣,其優勢在於不需移動裝置,即可採集樣品、進樣至層析儀,以及自行吹拂清掃,操作便利,經耐性測試可反覆加熱超過千次。
使用前濃縮系統結合氣相層析-質譜儀(GC-MS)可測得約20種大蒜氣味中的硫化物,食用大蒜後呼氣中亦測得15種來自大蒜的硫化物。此外以微型氣相層析儀(Micro-GC)建立其中兩種氣味主要成分硫化物之校正曲線,以觀察人體食用大蒜後呼氣成分中硫化物衰減趨勢及濃度變化。
Discussions about plant odors and volatile organic compounds (VOCs) in human breath have developed vigorously in recent years. Through the analysis of components in chromatography and mass spectrometry, it is possible to identify compounds that form special odor sources in plants, or to study human metabolic pathways and reactions, in food science or medicine are widely used.
This study combines the above two. Not only studying the odor components of garlic, but also analyzing the changes in breath components after eating garlic. Previous studies used headspace method, solid-phase microextraction (SPME) and supercritical fluid extraction (SFE) to collect garlic odor; human exhalation was used to fill with porous resin and carbon adsorbent for sampling. The laboratory uses a self-made multi-stage preconcentrator combined with a six-port valve for sampling and injection. Its advantage is that collecting, injecting, and cleaning by itself without moving the device. The operation is convenient. After the endurance test, it can be heated repeatedly for more than a thousand times.
About 20 kinds of sulfides in garlic odor can be detected by the preconcentration system combined with GC-MS, and 15 kinds of sulfides from garlic can also be detected in the breath after eating garlic. In addition, Micro-GC was used to establish the calibration curves of two main odor sulfides to observe the concentration changes in the exhaled components of humans after eating garlic.
1. Pleil, J. D., Role of exhaled breath biomarkers in environmental health science. Journal of toxicology and environmental health, part B 2008, 11 (8), 613-629.
2. Vereb, H.; Dietrich, A. M.; Alfeeli, B.; Agah, M., The possibilities will take your breath away: breath analysis for assessing environmental exposure. Environmental science and technology 2011, 45 (19), 8167-8175.
3. Song, G.; Qin, T.; Liu, H.; Xu, G.-B.; Pan, Y.-Y.; Xiong, F.-X.; Gu, K.-S.; Sun, G.-P.; Chen, Z.-D., Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung cancer 2010, 67 (2), 227-231.
4. Ruzsányi, V.; Kalapos, M. P., Breath acetone as a potential marker in clinical practice. Journal of breath research 2017, 11 (2), 024002.
5. Furne, J.; Majerus, G.; Lenton, P.; Springfield, J.; Levitt, D.; Levitt, M. D., Comparison of volatile sulfur compound concentrations measured with a sulfide detector vs. gas chromatography. Journal of dental research 2002, 81 (2), 140-143.
6. Hasler, W. L., Garlic breath explained: Why brushing your teeth won't help. Gastroenterology 1999, 117 (5), 1248-1249.
7. Rivlin, R. S., Historical perspective on the use of garlic. The Journal of nutrition 2001, 131 (3), 951S-954S.
8. Bayan, L.; Koulivand, P. H.; Gorji, A., Garlic: a review of potential therapeutic effects. Avicenna journal of phytomedicine 2014, 4 (1), 1.
9. Lawson, L. D., Garlic: a review of its medicinal effects and indicated active compounds. Blood 1998, 179, 62.
10. Adler, B. B.; Beuchat, L. R., Death of Salmonella, Escherichia coli O157: H7, and Listeria monocytogenes in garlic butter as affected by storage temperature. Journal of food protection 2002, 65 (12), 1976-1980.
11. Chan, J. Y. Y.; Yuen, A. C. Y.; Chan, R. Y. K.; Chan, S. W., A review of the cardiovascular benefits and antioxidant properties of allicin. Phytotherapy research 2013, 27 (5), 637-646.
12. Dahanukar, S.; Thatte, U., Current status of ayurveda in phytomedicine. Phytomedicine 1997, 4 (4), 359-368.
13. Li, J.; Dadmohammadi, Y.; Abbaspourrad, A., Flavor components, precursors, formation mechanisms, production and characterization methods: Garlic, onion, and chili pepper flavors. Critical reviews in food science and nutrition 2022, 62 (30), 8265-8287.
14. Brodnitz, M. H.; Pascale, J. V.; Van Derslice, L., Flavor components of garlic extract. Journal of agricultural and food chemistry 1971, 19 (2), 273-275.
15. Mengers, H. G.; Schier, C.; Zimmermann, M.; Gruhlke, M. C.; Block, E.; Blank, L. M.; Slusarenko, A. J., Seeing the smell of garlic: Detection of gas phase volatiles from crushed garlic (Allium sativum), onion (Allium cepa), ramsons (Allium ursinum) and human garlic breath using SESI-Orbitrap MS. Food chemistry 2022, 397, 133804.
16. Murray, M.; Pizzorno, J.; Murray, M., Allium sativum in: Natural Medicine. Kenmore, WA, USA: Churchill livingstone 2012.
17. Miron, T.; Rabinkov, A.; Mirelman, D.; Weiner, L.; Wilchek, M., A spectrophotometric assay for allicin and alliinase (Alliin lyase) activity: reaction of 2-nitro-5-thiobenzoate with thiosulfinates. Analytical biochemistry 1998, 265 (2), 317-325.
18. Abe, K.; Hori, Y.; Myoda, T., Volatile compounds of fresh and processed garlic. Experimental and therapeutic medicine 2020, 19 (2), 1585-1593.
19. Kimbaris, A. C.; Siatis, N. G.; Daferera, D. J.; Tarantilis, P. A.; Pappas, C. S.; Polissiou, M. G., Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum). Ultrasonics sonochemistry 2006, 13 (1), 54-60.
20. Lanzotti, V., The analysis of onion and garlic. Journal of chromatography A 2006, 1112 (1-2), 3-22.
21. Linus Pauling Institute at Oregon State University, Micronutrient Information Center, Garlic and Organosulfur Compounds https://lpi.oregonstate.edu/mic/food-beverages/garlic
22. Molina-Calle, M.; Priego-Capote, F.; de Castro, M. D. L., Headspace− GC–MS volatile profile of black garlic vs fresh garlic: Evolution along fermentation and behavior under heating. Lwt 2017, 80, 98-105.
23. Tamaki, K.; Sonoki, S.; Tamaki, T.; Ehara, K., Measurement of odour after in vitro or in vivo ingestion of raw or heated garlic, using electronic nose, gas chromatography and sensory analysis. International journal of food science and technology 2008, 43 (1), 130-139.
24. Calvo-Gómez, O.; Morales-López, J.; López, M. G., Solid-phase microextraction–gas chromatographic–mass spectrometric analysis of garlic oil obtained by hydrodistillation. Journal of chromatography A 2004, 1036 (1), 91-93.
25. Lemar, K. M.; Turner, M. P.; Lloyd, D., Garlic (Allium sativum) as an anti‐Candida agent: a comparison of the efficacy of fresh garlic and freeze‐dried extracts. Journal of applied microbiology 2002, 93 (3), 398-405.
26. Kimbaris, A. C.; Siatis, N. G.; Pappas, C. S.; Tarantilis, P. A.; Daferera, D. J.; Polissiou, M. G., Quantitative analysis of garlic (Allium sativum) oil unsaturated acyclic components using FT-Raman spectroscopy. Food chemistry 2006, 94 (2), 287-295.
27. Yu, T. H.; Wu, C. M.; Liou, Y. C., Volatile compounds from garlic. Journal of agricultural and food chemistry 1989, 37 (3), 725-730.
28. Lee, S.-N.; Kim, N.-S.; Lee, D.-S., Comparative study of extraction techniques for determination of garlic flavor components by gas chromatography–mass spectrometry. Analytical and bioanalytical chemistry 2003, 377, 749-756.
29. WINTERSTEIN, H., Chemical regulation of respiration. Ergebnisse der Physiologie, biologischen chemie und experimentellen pharmakologie 1955, 48, 328-528.
30. Nguyen, T.-A.; Woo-Park, J.; Hess, M.; Goins, M.; Urban, P.; Vaughan, J.; Smith, A.; Hunt, J., Assaying all of the nitrogen oxides in breath modifies the interpretation of exhaled nitric oxide. Vascular pharmacology 2005, 43 (6), 379-384.
31. Vasilescu, A.; Hrinczenko, B.; Swain, G. M.; Peteu, S. F., Exhaled breath biomarker sensing. Biosensors and bioelectronics 2021, 182, 113193.
32. Mortola, J. P., How to breathe? Respiratory mechanics and breathing pattern. Respiratory physiology and neurobiology 2019, 261, 48-54.
33. Hibbard, T.; Killard, A. J., Breath ammonia analysis: Clinical application and measurement. Critical reviews in analytical Chemistry 2011, 41 (1), 21-35.
34. Wang, Z.; Wang, C., Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. Journal of breath research 2013, 7 (3), 037109.
35. Issitt, T.; Wiggins, L.; Veysey, M.; Sweeney, S. T.; Brackenbury, W. J.; Redeker, K., Volatile compounds in human breath: critical review and meta-analysis. Journal of breath research 2022, 16 (2), 024001.
36. Miekisch, W.; Schubert, J. K.; Noeldge-Schomburg, G. F., Diagnostic potential of breath analysis—focus on volatile organic compounds. Clinica chimica acta 2004, 347 (1-2), 25-39.
37. De Vincentis, A.; Vespasiani-Gentilucci, U.; Sabatini, A.; Antonelli-Incalzi, R.; Picardi, A., Exhaled breath analysis in hepatology: State-of-the-art and perspectives. World journal of gastroenterology 2019, 25 (30), 4043.
38. Beauchamp, J.; Herbig, J.; Gutmann, R.; Hansel, A., On the use of Tedlar® bags for breath-gas sampling and analysis. Journal of breath research 2008, 2 (4), 046001.
39. Haick, H.; Broza, Y. Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A., Assessment, origin, and implementation of breath volatile cancer markers. Chemical society reviews 2014, 43 (5), 1423-1449.
40. Guengerich, F. P.; Shimada, T., Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chemical research in toxicology 1991, 4 (4), 391-407.
41. MINAMI, T.; BOKU, T.; INADA, K.; MORITA, M.; OKAZAKI, Y., Odor components of human breath after the ingestion of grated raw garlic. Journal of food science 1989, 54 (3), 763-763.
42. Ruiz, R.; Hartman, T. G.; Karmas, K.; Lech, J.; Rosen, R. T., Breath Analysis of Garlic-Borne Phytochemicals in Human Subjects: Combined Adsorbent Trapping and Short-Path Thermal Desorption Gas Chromatography—Mass Spectrometry. Food phytochemicals for cancer prevention I 1994, chapter 7, 102-1191994.
43. Suarez, F.; Springfield, J.; Furne, J.; Levitt, M., Differentiation of mouth versus gut as site of origin of odoriferous breath gases after garlic ingestion. American Journal of Physiology-gastrointestinal and liver physiology 1999, 276 (2), G425-G430.
44. Zhou, W.; Zou, X.; Lu, Y.; Xia, L.; Huang, C.; Shen, C.; Chen, X.; Chu, Y., Characterization of volatiles in garlic and in exhaled breath after garlic ingestion by on-line atmospheric pressure photoionization quadrupole time-of-flight mass spectrometry. Food science and technology research 2017, 23 (4), 613-620.
45. Blom, H. J.; Boers, G.; Van Den Elzen, J.; Gahl, W. A.; Tangerman, A., Transamination of methionine in humans. Clinical science (London, England: 1979) 1989, 76 (1), 43-49.
46. Taucher, J.; Hansel, A.; Jordan, A.; Lindinger, W., Analysis of compounds in human breath after ingestion of garlic using proton-transfer-reaction mass spectrometry. Journal of agricultural and food chemistry 1996, 44 (12), 3778-3782.
47. Lawson, L. D.; Gardner, C. D., Composition, stability, and bioavailability of garlic products used in a clinical trial. Journal of agricultural and food chemistry 2005, 53 (16), 6254-6261.
48. W.; Huber, K.; Popp, M.; Bauer, P.; Buettner, A.; Sharapa, C.; Scheffler, L.; Loos, H. M., Quantification of Allyl Methyl Sulfide, Allyl Methyl Sulfoxide, and Allyl Methyl Sulfone in Human Milk and Urine After Ingestion of Cooked and Roasted Garlic. Frontiers in nutrition 2020, 7, 565496.
49. Scheffler, L.; Sauermann, Y.; Heinlein, A.; Sharapa, C.; Buettner, A., Detection of volatile metabolites derived from garlic (Allium sativum) in human urine. Metabolites 2016, 6 (4), 43.
50. Laakso, I.; Seppänen-Laakso, T.; Hiltunen, R.; Müller, B.; Jansen, H.; Knobloch, K., Volatile garlic odor components: gas phases and adsorbed exhaled air analysed by headspace gas chromatography-mass spectrometry. Planta medica 1989, 55 (03), 257-261.
51. Agilent, San Jose, USA https://www.agilent.com/en/product/gas-chromatography/gc-sample-preparation-introduction/what-is-headspace
52. Kim, N. Y.; Park, M. H.; Jang, E. Y.; Lee, J., Volatile distribution in garlic (Allium sativum L.) by solid phase microextraction (SPME) with different processing conditions. Food science and biotechnology 2011, 20, 775-782.
53. Locatelli, D. A.; Altamirano, J. C.; Luco, J. M.; Norlin, R.; Camargo, A. B., Solid phase microextraction coupled to liquid chromatography. Analysis of organosulphur compounds avoiding artifacts formation. Food chemistry 2014, 157, 199-204.
54. Schmidt, K.; Podmore, I., Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. Journal of biomarkers 2015.
55. Weggler, B. A.; Gruber, B.; Teehan, P.; Jaramillo, R.; Dorman, F. L., Inlets and sampling. ISeparation science and technology 2020; Vol. 12, pp 141-203.
56. Liu, J.; Ji, F.; Chen, F.; Guo, W.; Yang, M.; Huang, S.; Zhang, F.; Liu, Y., Determination of garlic phenolic compounds using supercritical fluid extraction coupled to supercritical fluid chromatography/tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis 2018, 159, 513-523.
57. Calvey, E. M.; Matusik, J. E.; White, K. D.; Betz, J. M.; Block, E.; Littlejohn, M. H.; Naganathan, S.; Putman, D., Off-line supercritical fluid extraction of thiosulfinates from garlic and onion. Journal of agricultural and food chemistry 1994, 42 (6), 1335-1341.
58. Moradi-kheibari, N.; Ahmadzadeh, H.; Talebi, A. F.; Hosseini, M.; Murry, M. A., Recent advances in lipid extraction for biodiesel production. Advances in feedstock conversion technologies for alternative fuels and bioproducts 2019, 179-198.
59. Oliveira, L. F.; Mallafré-Muro, C.; Giner, J.; Perea, L.; Sibila, O.; Pardo, A.; Marco, S., Breath analysis using electronic nose and gas chromatography-mass spectrometry: A pilot study on bronchial infections in bronchiectasis. Clinica chimica acta 2022, 526, 6-13.
60. Yuan, Z.-C.; Li, W.; Wu, L.; Huang, D.; Wu, M.; Hu, B., Solid-phase microextraction fiber in face mask for in vivo sampling and direct mass spectrometry analysis of exhaled breath aerosol. Analytical chemistry 2020, 92 (17), 11543-11547.
61. Koziel, J. A.; Spinhirne, J. P.; Lloyd, J. D.; Parker, D. B.; Wright, D. W.; Kuhrt, F. W., Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters. Journal of the air and waste management association 2005, 55 (8), 1147-1157.
62. SKC, Scientific Kit Corporation, Pittsburgh, USA https://www.skcltd.com/products2/sorbent-tubes/tenax-sorbent-tubes.htm
63. Davies, S.; Spanel, P.; Smith, D., Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney international 1997, 52 (1), 223-228.
64. Chen, C.-C.; Hsieh, J.-C.; Chao, C.-H.; Yang, W.-S.; Cheng, H.-T.; Chan, C.-K.; Lu, C.-J.; Meng, H.-F.; Zan, H.-W., Correlation between breath ammonia and blood urea nitrogen levels in chronic kidney disease and dialysis patients. Journal of breath research 2020, 14 (3), 036002.
65. Yu, S.-Y.; Tung, T.-W.; Yang, H.-Y.; Chen, G.-Y.; Shih, C.-C.; Lee, Y.-C.; Chen, C.-C.; Zan, H.-W.; Meng, H.-F.; Lu, C.-J., A versatile method to enhance the operational current of air-stable organic gas sensor for monitoring of breath ammonia in hemodialysis patients. ACS sensors 2019, 4 (4), 1023-1031.
66. Lin, C.-H.; Wu, L.-X.; Chen, K.-H.; Lo, H.-F.; Lin, K.-C.; Kasai, T.; Chen, C.-C.; Shih, C.-H.; Manzano, M. C.; Santos, G. N., Non-invasive and time-dependent blood-sugar monitoring via breath-derived CO2 correlation using gas chromatograph with a milli-whistle gas analyzer. Analytical sciences 2020, 36 (6), 739-743.
67. 徐子欣. 微型氣相層析儀應用於呼氣丙酮及中藥材氣味分析之研究. 國立臺灣師範大學碩士論文, 2011.