研究生: |
王文洋 Wang, Wen-Yang |
---|---|
論文名稱: |
N-保護-3-硝基吲哚和2-氨基苯扎丙酮的不對稱有機催化形式 [4+2] 環加成反應 Asymmetric Organocatalytic Formal [4+2] Cycloaddition of N-protected-3-Nitroindoles and 2-Aminobenzalacetones |
指導教授: |
陳焜銘
Chen, Kwunmin |
口試委員: |
李文山
Li, Wen-Shan 葉怡均 Yeh, Yi-Chun 陳焜銘 Chen, Kwunmin |
口試日期: | 2022/07/26 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 有機催化 、不對稱合成 、[4+2]環加成 、3-硝基吲哚 、四氫-5H-吲哚并[2,3-b]喹啉 |
英文關鍵詞: | Organocatalysis, Asymmetric synthesis, [4+2] cycloaddition, 3-nitroindole, tetrahydro-5H-indolo[2,3-b]quinoline |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202201094 |
論文種類: | 學術論文 |
相關次數: | 點閱:239 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,發現一些具有生物活性的天然物,都有著四氫-5H-吲哚并[2,3-b]喹啉的核心骨架。過去的文獻中,對於此類架構合成必須透過金屬催化劑控制立體選擇性,直接使用3-硝基吲哚搭配不對稱有機催化方法尚未被發表。本研究首次展示透過不對稱有機催化形式[4+2]環加成反應,構建四氫-5H-吲哚并[2,3-b]喹啉衍生物。
使用雙功能金雞納生物鹼方醯胺催化劑,對3-硝基吲哚和甲基-2-(甲苯磺酰氨基)苯基α,β-不飽和酮,在溫和的反應條件下,進行鏡像選擇性有機催化反應,合成一系列含有三個連續立體中心的四氫-5H-吲哚并[2,3-b]喹啉衍生物,得到良好的產率(高達60%)和高度立體選擇性(高達15:1 dr和98% ee)。
In recent years, some biologically active natural products have been found to have the core skeleton of tetrahydro-5H-indolo[2,3-b]quinoline. In the past literature, the stereoselectivity must be controlled by metal catalysts for this type of architecture synthesis, and the direct use of 3-nitroindole with asymmetric organocatalysis methods has not been published. This study features the first asymmetric organocatalytic formal for constructed tetrahydro-5H-indolo[2,3-b]quinolines derivatives.
An organocatalytic enantioselective synthesis of tetrahydro-5H-indolo[2,3-b]quinolines derivatives was demonstrated using 3-nitroindoles and methyl 2-(tosylamino)phenyl α,β-unsaturated ketones in the presence of the bifunctional cinchona alkaloids squaramide catalyst. A series of tetrahydro-5H-indolo[2,3-b]quinolines derivatives containing three continuous stereogenic centers were obtained in good yields (up to 60%) and with high stereoselectivities (up to 15:1 dr and up to 98% ee).
1. Chirality (chemistry). https://en.wikipedia.org/wiki/Chirality_(chemistry).
2. Stereoisomerism. https://en.wikipedia.org/wiki/Stereoisomerism.
3. Leitereg, T. J.; Guadagni, D. G.; Harris, J.; Mon, T. R.; Teranishi, R. Chemical and Sensory Data Supporting the Difference between the Odors of the Enantiomeric Carvones. J. Agr. Food. Chem. 1971, 19 (4), 785-787.
4. Friedman, L.; Miller, J. G. Odor Incongruity and Chirality. Science 1971, 172 (3987), 1044-1046.
5. Enantiopure Drug. https://en.wikipedia.org/wiki/Enantiopure_drug.
6. Vargesson, N. Thalidomide-Induced Teratogenesis: History and Mechanisms. Birth Defects Res. C Embryo Today 2015, 105 (2), 140-156.
7. MacMillan, D. W. The Advent and Development of Organocatalysis. Nature 2008, 455 (7211), 304-308.
8. The Nobel Prize in Chemistry. https://www.nobelprize.org/prizes/chemistry/.
9. Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Asymmetric Enamine Catalysis. Chem. Rev. 2007, 107 (12), 5471-5569.
10. List, B.; Lerner, R. A.; Barbas, C. F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122 (10), 2395-2396.
11. Erkkila, A.; Majander, I.; Pihko, P. M. Iminium Catalysis. Chem. Rev. 2007, 107 (12), 5416-5470.
12. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels−Alder Reaction. J. Am. Chem. Soc. 2000, 122 (17), 4243-4244.
13. Doyle, A. G.; Jacobsen, E. N. Small-Molecule H-bond Donors in Asymmetric Catalysis. Chem. Rev. 2007, 107 (12), 5713-5743.
14. Zhou, X. J.; Zhao, J. Q.; Chen, X. M.; Zhuo, J. R.; Zhang, Y. P.; Chen, Y. Z.; Zhang, X. M.; Xu, X. Y.; Yuan, W. C. Organocatalyzed Asymmetric Dearomative Aza-Michael/Michael Addition Cascade of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes with 2-Aminochalcones. J. Org. Chem. 2019, 84 (7), 4381-4391.
15. Yoshida, K.; Inoue, H.; Oji, Y.; Suzuki, H.; Takao, K. I. Enantioselective Organocatalytic Construction of Spirochroman Derivatives. J. Org. Chem. 2020, 85 (15), 10189-10197.
16. Akiyama, T. Stronger Bronsted Acids. Chem. Rev. 2007, 107 (12), 5744-5758.
17. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Bronsted Acid. Angew. Chem. Int. Ed. 2004, 43 (12), 1566-1568.
18. Connon, S. J. Chiral Phosphoric Acids: Powerful Organocatalysts for Asymmetric Addition Reactions to Imines. Angew. Chem. Int. Ed. 2006, 45 (24), 3909-3912.
19. Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; Macmillan, D. W. Enantioselective Organocatalysis Using SOMO Activation. Science 2007, 316 (5824), 582-585.
20. Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. Enantioselective Organo-Cascade Catalysis. J. Am. Chem. Soc. 2005, 127 (43), 15051-15053.
21. Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Cascade Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2006, 45 (43), 7134-7186.
22. Liu, Y.; Izzo, J. A.; McLeod, D.; Ricko, S.; Svenningsen, E. B.; Poulsen, T. B.; Jorgensen, K. A. Organocatalytic Asymmetric Multicomponent Cascade Reaction for the Synthesis of Contiguously Substituted Tetrahydronaphthols. J. Am. Chem. Soc. 2021, 143 (21), 8208-8220.
23. Tietze, L. F. Domino Reactions in Organic Synthesis. Chem. Rev. 1996, 96 (1), 115-136.
24. Kaya, U.; Chauhan, P.; Mahajan, S.; Deckers, K.; Valkonen, A.; Rissanen, K.; Enders, D. Squaramide-Catalyzed Asymmetric aza-Friedel-Crafts/N,O-Acetalization Domino Reactions Between 2-Naphthols and Pyrazolinone Ketimines. Angew. Chem. Int. Ed. 2017, 56 (48), 15358-15362.
25. Denmark, S. E.; Thorarensen, A. Tandem [4+2]/[3+2] Cycloadditions of Nitroalkenes. Chem. Rev. 1996, 96 (1), 137-166.
26. Lai, Y. T.; Nagaraju, K.; Gurubrahamam, R.; Chen, K. Enantioselective Organocatalytic Synthesis of δ‐Lactone‐Fused 4‐Chromanones. Adv. Synth. Catal. 2020, 362 (18), 3846-3850.
27. Rkein, B.; Bigot, A.; Birbaum, L.; Manneveau, M.; De Paolis, M.; Legros, J.; Chataigner, I. Reactivity of 3-Nitroindoles with Electron-Rich Species. Chem. Commun. 2021, 57 (1), 27-44.
28. Pelkey, E. T.; Gribble, G. W. One-Step Syntheses of the Pyrrolo[3,4-b]indole and Pyrrolo[2,3-b]indole Ring Systems from 3-Nitroindoles. Chem. Commun. 1997, 1873-1874.
29. Zhao, J. Q.; Zhou, M. Q.; Wu, Z. J.; Wang, Z. H.; Yue, D. F.; Xu, X. Y.; Zhang, X. M.; Yuan, W. C. Asymmetric Michael/Cyclization Cascade Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles with Amino-Thiocarbamate Catalysts: Enantioselective Synthesis of Polycyclic Spirooxindoles. Org. Lett. 2015, 17 (9), 2238-2241.
30. Chen, X. M.; Lei, C. W.; Yue, D. F.; Zhao, J. Q.; Wang, Z. H.; Zhang, X. M.; Xu, X. Y.; Yuan, W. C. Organocatalytic Asymmetric Dearomatization of 3-Nitroindoles and 3-Nitrobenzothiophenes via Thiol-Triggered Diastereo- and Enantioselective Double Michael Addition Reaction. Org. Lett. 2019, 21 (14), 5452-5456.
31. Andreini, M.; De Paolis, M.; Chataigner, I. Thiourea-Catalyzed Dearomatizing [4+2] Cycloadditions of 3-Nitroindole. Catal. Commun. 2015, 63, 15-20.
32. Li, Y.; Tur, F.; Nielsen, R. P.; Jiang, H.; Jensen, F.; Jorgensen, K. A. Enantioselective Formal [4+2] Cycloadditions to 3-Nitroindoles by Trienamine Catalysis: Synthesis of Chiral Dihydrocarbazoles. Angew. Chem. Int. Ed. 2016, 55 (3), 1020-1024.
33. Yue, D. F.; Zhao, J. Q.; Chen, X. Z.; Zhou, Y.; Zhang, X. M.; Xu, X. Y.; Yuan, W. C. Multiple Hydrogen-Bonding Bifunctional Thiourea-Catalyzed Asymmetric Dearomative [4+2] Annulation of 3-Nitroindoles: Highly Enantioselective Access to Hydrocarbazole Skeletons. Org. Lett. 2017, 19 (17), 4508-4511.
34. Cao, D.; Ying, A.; Mo, H.; Chen, D.; Chen, G.; Wang, Z.; Yang, J. [4+2] Annulation of 3-Nitroindoles with Alkylidene Malononitriles: Entry to Substituted Carbazol-4-amine Derivatives. J. Org. Chem. 2018, 83 (20), 12568-12574.
35. May, J. A.; Zeidan, R. K.; Stoltz, B. M. Biomimetic Approach to Communesin B (a.k.a. nomofungin). Tetrahedron Lett. 2003, 44 (6), 1203-1205.
36. May, J. A.; Stoltz, B. The Structural and Synthetic Implications of the Biosynthesis of the Calycanthaceous Alkaloids, the Communesins, and Nomofungin. Tetrahedron 2006, 62 (22), 5262-5271.
37. Shao, W.; You, S. L. Highly Diastereo- and Enantioselective Synthesis of Tetrahydro-5H-Indolo[2,3-b]quinolines through Copper-Catalyzed Propargylic Dearomatization of Indoles. Chem. Eur. J. 2017, 23 (51), 12489-12493.
38. Suo, J.-J.; Du, J.; Jiang, Y.-J.; Chen, D.; Ding, C.-H.; Hou, X.-L. Diastereo- and Enantioselective Palladium-Catalyzed Dearomative [4+2] Cycloaddition of 3-Nitroindoles. Chin. Chem. Lett. 2019, 30 (8), 1512-1514.
39. Shao, W.; Xu-Xu, Q. F.; You, S. L. Highly Diastereoselective Synthesis of Polycyclic Indolines through Formal [4+2] Propargylic Cycloaddition of Indoles with Ethynyl Benzoxazinanones. Chem. Asian. J. 2020, 15 (16), 2462-2466.
40. Yang, W.; He, H. X.; Gao, Y.; Du, D. M. Organocatalytic Enantioselective Cascade Aza‐Michael/Michael Addition for the Synthesis of Highly Functionalized Tetrahydroquinolines and Tetrahydrochromanoquinolines. Adv. Synth. Catal. 2013, 355 (18), 3670-3678.
41. Liu, K.; Wang, G.; Cheng, S.-J.; Jiang, W.-F.; He, C.; Ye, Z.-S. Phosphine-Catalyzed Dearomative [3+2] Annulation of 3-Nitroindoles and Allenoates. Tetrahedron Lett. 2019, 60 (29), 1885-1890.
42. Vinoth, P.; Karuppasamy, M.; Vachan, B. S.; Muthukrishnan, I.; Maheswari, C. U.; Nagarajan, S.; Pace, V.; Roller, A.; Bhuvanesh, N.; Sridharan, V. Palladium-Catalyzed Regioselective Syn-Chloropalladation-Olefin Insertion-Oxidative Chlorination Cascade: Synthesis of Dichlorinated Tetrahydroquinolines. Org. Lett. 2019, 21 (9), 3465-3469.
43. Sahoo, M. K.; Jaiswal, G.; Rana, J.; Balaraman, E. Organo-Photoredox Catalyzed Oxidative Dehydrogenation of N-Heterocycles. Chem. Eur. J. 2017, 23 (57), 14167-14172.