研究生: |
李明忠 Ming-Chung Lee |
---|---|
論文名稱: |
探討感覺訊息對美洲蟑螂單眼巨大神經元的影響 Effects of Sensory Informations on the Ocellar L-neurons in American Cockroach, Periplaneta americana |
指導教授: |
童麗珠
Tung, Li-Chu 林金盾 Lin, Jin-Tun |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 感覺 、單眼 、巨大神經元 、蟑螂 、美洲蟑螂 、受器 、伽馬氨基丁酸 、木防己苦毒素 、番木鱉鹼 |
英文關鍵詞: | sensory, ocellus, L-neuron, cockroach, Periplaneta americana, receptor, GABA, picrotoxin, strychnine |
論文種類: | 學術論文 |
相關次數: | 點閱:181 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單眼、複眼及觸角、尾毛等都是美洲蟑螂(Periplaneta americana)身體表面重要的感覺器官。單眼及複眼都位於身體前方的頭部,分別會對光刺激產生反應,但就視細胞對光的敏感度而言,單眼是複眼的數百倍。觸角是頭部另一個重要的感覺器官,對機械刺激和化學刺激都有明顯的反應。尾毛是身體後方最重要的感覺構造,對周遭環境空氣流動的瞬間變化非常敏感。
單眼照光後,會誘發巨大神經元產生過極化反應,並藉由單眼神經將訊息傳入腦部;此時若再施以第二個刺激(例如:光照複眼、擺動觸角、拍動翅膀、移動後腳、風吹尾毛等),則會誘發單眼巨大神經元產生另一個明顯的去極化反應。利用離子電泳法注射GABA及GABAA受器的擬似劑 muscimol,都會引起去極化反應,但注射另一種GABAA受器的擬似劑THIP後,卻沒有任何影響。利用灌流法灌流GABA及GABAA受器的擬似劑imidazole acetic acid後,會使巨大神經元逐漸產生去極化反應,但若用其他的GABAA受器擬似劑3-APS及guanidine acetic acid來灌流,反而會使巨大神經元產生過極化反應。為了更加確認巨大神經元上GABA受器的屬性,另外再使用GABAB受器的擬似劑baclofen來灌流,但並未發現對該受器有任何影響。
picrotoxin、bicuculline、bicuculline methiodide和nipecotic acid等藥品都是傳統的GABAA受器拮抗劑,經由灌流測試的結果,只有picrotoxin才會有效抑制各種機械刺激(例如風吹尾毛、擺動觸角及拍動翅膀)及注射GABA所引起的去極化反應,且提高灌流濃度後,抑制的效果會更明顯。此外,在擺動觸角實驗中,還發現產生反應所需的延遲時間,會隨著灌流picrotoxin濃度的提高而逐漸增長。
灌流glycine受器的拮抗劑strychnine後,也會抑制由各種機械刺激所誘發的去極化反應,但抑制的效果不盡相同。對風吹尾毛及拍動翅膀所引起的去極化反應而言,灌流低濃度(10-7M)的strychnine即有明顯的抑制反應,抑制效果比灌流picrotoxin更明顯。但對擺動觸角所引起的去極化反應而言,灌流低濃度的strychnine後,抑制反應並不明顯;灌流同濃度的picrotoxin後,抑制的效果較顯著。
由上述結果可推測,單眼巨大神經元上確實存在著GABA受器,而實驗時所施加之來自前方頭部的擺動觸角刺激,與來自後方身體胸部的擺動翅膀及腹部末端的風吹尾毛刺激,這些訊息傳入中樞後,可能會再藉由不同的傳出神經元將訊息傳入單眼神經內,透過此種受器誘發巨大神經元產生去極化反應。而這些位於巨大神經元上的GABA受器,其特性雖然較類似脊椎動物的GABAA受器,活性也與氯離子孔道的通透性有關,但並不完全相同,可能是昆蟲所特有的一種受器。
除此之外,為了找出翅膀上的感覺接受器,是否如同觸角、尾毛一樣也是感覺毛,本研究特地針對美洲蟑螂的前翅和後翅,分別做了掃瞄式電子顯微鏡的觀察。結果發現美洲蟑螂翅膀表面分佈著許多形態各異的感覺毛,根據外形可分為硬棘型、剛毛型、細毛型、短毛型、短錐型、長錐型及腔錘型等七種。各種感覺毛在翅上的分佈情形不盡相同,其中有五種分佈在前翅的背面,三種分佈在前翅的腹面,六種分佈在後翅的背面,而在後翅腹面則幾乎沒有感覺毛。各種感覺毛的數量也有差異,前翅背面以剛毛型最多,前翅腹面以短毛型較多,而後翅背面則以長錐型最普遍。進一步使用甲基藍對翅膀染色後,發現前、後翅內分佈著許多感覺神經元,依據外形可分為單極、雙極和多極等三類。由此可推測,美洲蟑螂的翅膀不單只有飛行的功能,可能還可藉由翅膀上的感覺毛來感測周遭環境的變化,並經由感覺神經元將訊息傳入中樞以調控行為。
Ocelli, compound eyes, antennas, and cerci are all important sense organs of american cockroach, Periplaneta americana. Ocelli and compound eyes are located on the head, and both of them can respond to the stimulation of light. The ocelli are more sensitive than compound eyes in response to illumination. Antenna is another important sense organs on the head and responds conspicuously to the mechanical and chemical stimulations. The cerci are the most important sense organs in the rear area of the abdomen and very sensitive to the air flow of surrounding environment.
When the ocellus were illuminated, it induced a hyperpolarized membrane potential in the L-neuron and sent messages to the brain through ocellar nerves. At this moment, the second stimulation(such as illuminating compound eye, antenna-swinging, wing-raising, leg-moving, and cercal stimulation)induces another obviously depolarized membrane potential in the L-neuron. Iontophoretic injection of GABA and muscimol(a traditional GABAA receptor agonist)into the L-neurons produced a depolarization response. However, iontophoretic injection of THIP into the L-neurons(another GABAA receptor agonist)had no effects. Perfusion of GABA and imidazole acetic acid(a GABAA receptor agonist)depolarized, while 3-APS and guanidine acetic acid(both GABAA agonists)hyperpolarized the L-neurons. Perfusion of baclofen (a GABAB agonist)into the L-neurons failed to induce depolarization.
Picrotoxin, bicuculline, bicuculline methiodide and nipecotic acid are all traditional GABAA receptor antagonists. Among them, only perfusion of picrotoxin effectively suppressed both mechanical stimulation- and GABA-induced depolarization. This inhibition would be more effective by perfusion of high concentration of picrotoxin. In the antenna-swinging test, we found that the delay time of depolarization response was extended progressively with increased picrotoxin through perfusion.
Perfusion of strychnine, a glycine antagonist, was found to inhibit the depolarization induced by mechanical stimulation. This depolarization response induced by cercal stimulation and wing-raising was effectively suppressed with a relatively low concentration of strychnine. It seems that administration of strychnine produced a more effective blockade on GABA actions than that evoked by picrotoxin. In contrast, the depolarization induced by antenna-swinging was largely inhibited by perfusion of picrotoxin versus strychnine.
These results strongly suggest that GABA receptor may present in the ocellar L-neurons. The messages from antenna-swinging, wing-raising or cercal stimulation may depolarize the ocellar L-neurons through GABA receptors. The characteristics of GABA receptors in ocellar L-neurons are similar to those GABAA receptors in the vertebrates. It is difficult to classify L-neuron GABA receptors as GABAA receptors seen in the vertebrates, although both types of GABA receptors being similar in term of chloride channel activation. It is very likely to be a unique GABA receptor in insect.
The sensillae are main sense organs distributed on the surface of antenna and circus. In order to find the sense organs on the surface of wings, we investigated the forewings and hindwings by using a scanning electron microscope. There are many different types of sensillae distributed on the surface of wings in american cockroach. According to their morphology, these sensillae might be termed short-trichodeum, long-trichodeum, fine- trichodeum, chaeticum, short-basiconicum, long-basiconicum and coeloconicum. Each type of sensilla has a specific distribution pattern. There are five types of sensilla distributed on the dorsal surface and three types on the ventral surface of forewings. Six types of sensillae were distributed on the dorsal surface of hindwings, while only very few or no sensilla on the ventral surface of hindwings. The amount of long-trichodeum sensilla was much more than any other types on the dorsal surface of forewings, the chaeticum sensilla was more abundant on the ventral surface of forewings, whereas the long-basiconicum sensilla was the most abundant on the dorsal surface of hindwings. In addition, we used methylene blue to dye the wings and found that there were many sensory neurons distributed within fore- and hindwings. Based on morphological observation, the sensory neurons could be divided into three types: monopolar, bipolar and multipolar neurons. We suggest that the wings of american cockroach might not only function in flying, but also could detect the changes of surrounding environment using sensillae. The messages collected from sensillae may transmit to the central nervous system through the sensory neurons distributed on wings, and subsequently modulate behaviors.
蔡在壽,李琦玫,林金盾,吳京一。1995. 探討八星虎甲蟲複眼之研究(鞘翅目:虎甲蟲科)。中華昆蟲 15: 203-213.
童麗珠和林金盾。2000. 小白紋毒蛾(Orgyia postica)(鱗翅目:毒蛾科)複眼外形之研究。中華昆蟲 20: 179-185.
Abed, D., Chevied, P., Farine, J. P., Bonnard, O., LE QUÉRÉ, J. L. and Brossut, R. 1933. Calling behaviour of female Periplaneta americana: behavioural analysis and identification of the pheromone source. J. Insect Physiol. 39: 709-720.
Albert, P. J., Zacharuk, R. Y. and Wong, L. 1976. Structure, innervation, and distribution of sensilla on the wings of a grasshopper. Can. J. Zool. 54: 1542-1553.
Altner, H. and Loftus, R. 1985. Ultrastructure and function of insect thermo- and hydroreceptors. Ann. Rev. Entomol. 30: 273-295.
Altner, H. and Stetter, H. 1980. Olfactory input from the maxillary palps in the cockroach as compared with the antennal input. Joint Cong. Chemoreception. ECRO IV / ISOT VII, Noordwiijkeshout, Holland.
Altner, H., Sass, H. and Altner, I. 1977. Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta Americana. Cell Tissue Res. 17: 389-395.
Amat, C. and Hue, B. 1997. Activation of picrotoxin-resistant GABA receptors by GABA and related compounds induces modulation of cockroach dorsal paired median (DPM) neuron firing. J. Insect Physiol. 43: 1125-1131.
Aronstein, K. and Ffrench-Constant, R. H. 1995. Immunocytochemistry of a novel GABA receptor subunit Rdl in Drosophila melanogaster. Invert. Neurosci. 1: 25-31.
Aydar, E. and Beadle, D. J. 1999. The pharmacological profile of GABA receptors on cultured insect neurons. J. Insect Physiol. 45: 213-219.
Bai, D. and Sattelle, D. B. 1995. A GABAb receptor on an identified insect motor neurone. J. Exp. Biol. 198: 889-894.
Barth, R. H. 1970. The mating behavior of Periplaneta americana and Blatta orientalis (Blattaria, Blattinae) with notes on 3 additional species of Periplaneta and interspecification of female sex pheromones. Z. Tierpsychol. 27: 722-748.
Blechschmidt, K., Eckert, M. and Penzlin, H. J. 1990. Distribution of GABA-like immunoreactivity in the central nervous system of the cockroach Periplaneta americana. Chem. Neuroanat. 3: 323-336.
Boeckh, J., Ernst, K. D., Sass, H. and Waldow, U. 1984. Anatomical and physiological characteristics of individual neurons in the central antennal pathway of insect. J. Insect Physiol. 30: 15-26.
Bowery, N. G., Maguire, J. J. and Pratt, G. D. 1991. Aspects of the molecular pharmacology of GABAb receptors. Semin. Neurosci. 3: 241-249.
Bowery, N. G., Price, G. M., Hudson, A. L., Hill, D. R., Wilkin, G. P. and Turnbull, M. J. 1984. GABA receptor multiplicity – Visualization of different receptor types in the mammalian CNS. Neuropharmacy. 23: 219-231.
Buckingham, S. D., Hue, B. and Sattelle, D. B. 1994. Actions of bicuculline on cell body and neuropilar membranes of identified insect neurons. J. Exp. Biol. 186: 235-244.
Butler, R. 1973. The anatomy of the compound eye of Periplaneta Americana L. I. General features. J. Comp. Physiol. 83: 223-238.
Chang, J. L., Lin, J. T., Tsai, T. S. and Wu, C. Y. 1994. Study on the development of ocellar L-neurons of American cockroach. Zool. Studies 34: 310-313.
Dagan, D. and Camhi, J. M. 1979. Responses to wind recorded from the cercal nerve of the cockroach Periplaneta americana. II. Directional sensitivity of the sensory neurons innervating single columns of filiform hairs. J. Comp. Physiol. 133: 241-249.
Datum, K. H., Weiler, R. and Zettler, F. 1986. Immunocytochemical demonstration of GABA and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system. J. Comp. Physiol. 159: 241-249
Erber, J. and Kloppenburg, P. 1995. The modulatory effects of serotonin and octopamine in the visual system of the honey bee(Apis mellifera L.). I. Behavioral analysis of the motion-sensitive antennal reflex. J. Comp. Physiol. 176: 111-118.
Flores, G. B. and Lazzari, C. R. 1996. The role of the antennae in Triatoma infestans: Orientation towards thermal sources. J. Insect Physiol. 42: 433-440.
Fuller, H., Ecker, M. and Blechschmidt, K. 1989. Distribution of GABA-like immunoreactive neurons in the optic lobes of Periplaneta americana. Cell Tissue Res. 255: 225-233.
Fudalewicz-Niemczyk, W. and Rosciszewska. M. 1972a. The innervation and sense organs of the wings of Gryllus domesticus L. (Orthoptera). Acta Biol. Cracov. Ser. Zool. 15: 36-51.
Fudalewicz-Niemczyk, W. and Rosciszewska, M. 1972b. Organogenesis of the nerves and sense organs in the wings of Gryllus domesticus L. (Orthoptera). Acta Biol. Cracov. Ser. Zool. 15: 73-85.
Gemenno, C., Snook, K., Benda, N. and Schal, C. 2003. Behavioral and electrophysiological evidence for volatile sex pheromones in Parcoblatta wood cockroaches. J. Chem. Ecol. 29(1): 37-54.
Gettrup, E. 1965. Sensory mechanisms in locomotion: the companiform sensilla of the insect wing and their function during flight. Cold Spring Harbor Symp. Quant. Biol. 30: 615-622.
Gnatzy, W. 1973. Die Feinstruktur der Fadenhaare auf den Cerci von Periplaneta americana L. Verb. Dt. Zool. Ges. 66: 37-42.
Gnatzy, W. 1976. The ultrastructure of the thread-hairs on the cerci of the cockroach Periplaneta americana L. : The intermoult phase. J. ultrastruct. Res. 54: 124-134.
Goodman, L. J. 1970. The structure and function of the insect dorsal ocellus. Adv. Insect Physiol. 7: 97-195.
Hallberg, E., Hansson, B. S. and Steinbrecht, R. A. 1994b. Morphological characteristics of antennal sensilla in the European cornborer Ostrinia nubilalis (Lepidoptera: Pyralidae). Tiss. Cell 26: 489-502.
Hamill, O. P., Bormann, J. and Sakmann, B. 1983. Activation of multipleconductance state chloride channels in spinal neurons by glycine and GABA. Nature 305: 805-808.
Hansson, B. S., Blackwell, A., Hallberg,E. and Löfqvist, J. 1995. Physiology and morphological characteristics of the sex pheromone detecting system in male corn stemborers, Chilo partellus (Lepidoptera: Pyralidae). J. Insect Physiol. 41(2): 171-178.
Hosie, A. M., Aronstein, K. Sattelle, D. B. and Ffrench-Constant, R. H. 1997. Molecular biology of insect neuronal GABA receptors. Trends Neurosci. 20: 578-583.
Hunger, T. and Steinbrecht, R. A. 1998. Functional morphology of a double-walled multiporous olfactory sensillum: the sensillum coeloconicum of Bombyx mori (Insecta, Lepidoptera). Tiss. Cell 30(1): 14-29.
Jackel, C., Krenz, W. D. and Nagy, F. 1994. Bicuculline/baclofen- insensitive GABA response in crustacean neurons in culture. J. Exp. Biol. 191: 167-193.
Johnston, G. A. R. 1986. Multiplicity of GABA receptors. In: Benzodiazpine/GABA Receptors and Chloride Channels: Structure and Functional Properties, edited by Olsen, R.W. and Venter, J.C. New York: Alan R. Liss. pp.57-71.
Kastberger, G. 1990. The ocelli control the flight course in honeybees. Physiol. Entomol. 15: 337-346.
Kastberger, G. and Schuhmann. K. 1993. Ocellar occlusion effect on the flight behavior of homing honeybee. J. Insect Physiol. 39: 589-600.
Kuyazeva, N. I. 1970. Receptors of the wing apparatus regulating the flight of the migratory locust, Locusta migratoria L. (Orthoptera, Acrididae). Entomol. Rev. 49: 311-317.
Lazzari, C. R., Reiseman, C. E. and Insausti, T. C. 1998. The role of the ocelli in the phototactic behavior of the haematophagous bug Triatoma infestans. J. Insect Physiol. 44: 1159-1162.
Liang, D. and Schal, C. 1993. Calling behavior of the female German cockroach, Blattella germanica (Dictyoptera: Blattellidae). J. Insect Behav. 6: 603-614.
Lin, J. T. 1993. Identification of photoreceptor locations in the compound eye of Coccinella septempunctaca Linnaeus (Coleoptera, Coccinellidae). J. Insect Physiol. 39: 555-562.
Lin, J. T. and Wu, C. Y. 1996. Characteristics of histamine receptors on the ocellar L-neurons of American cockroaches Periplaneta americana. J. Insect Physiol. 42: 843-849.
Lin, J. T., Wu, C. Y. and Chang, Y. T. 1992. Semifused rhabdom of the ladybird beetle Coccinella septempunctata Linnaeus(Coleoptera Coccinellidae). Bull. Inst. Zool. Academia Sinica. 31: 261-269.
Lin, J. T., Toh, Y., Mizunami, M. and Tateda, H. 1990. Putative neurotransmitter in the ocellar neuropil of American cockroaches. Zool. Sci. 7: 593-603.
Lummis, S. C. R. and Sattelle, D. B. 1985. Insect central nervous system γ-aminobutyric acid. Neurosci. Letters 60: 13-18.
Meinecke, C. C. 1975. Riechsensillen und systematik der lamellicornia (Insecta, Coleoptera). Zoomorphol. 82(1): 1-42.
Mizunami, M. 1994. Processing of contrast signals in the insect ocellar system. Zool. Sci. 11: 175-190.
Mizunami, M. 1995a. Morphology of higher-order ocellar interneurons in the cockroach brain. J. Comp. Neurol. 352: 293-304.
Mizunami, M. 1995b. Neural organization of ocellar pathways in the cockroach brain. J. Comp. Neurol. 362: 458-468.
Mizunami, M. 1995c. Functional diversity of neural organization in insect ocellar systems. Vision Res. 35: 443-452.
Mizunami, M. and Tateda, H. 1986. Classification of ocellar interneurons in the cockroach brain. J. Exp. Biol. 125: 57-70.
Nicklaus, R. 1965. Die Erregung einzelner Fadenhaare von Periplaneta americana in Abhangigkeit von der Grosse und Richtung der Auslenkung. Z. vergl. Physiol. 50: 331-362.
Nicklaus, R., Lundquist, P. G. and Wersall, J. 1967. Elekttonenmikroskopie am sensorischen Apparat der Fadenhaare auf den Cerci der Schabe Periplaneta Americana. Z. vergl. Physiol. 56: 412-415.
Norton, W. N. and Vinson, S. B. 1974. A comparative ultrastructural and behavioral study of the antennal sensory sensilla of the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). J. Morphol. 142: 329-349.
Ochieng, S. A., Park, K. C., Zhu, J. W. and Baker, T. C. 2000. Functional morphology of antennal chemoreceptors of the parasitoid Microplitis croceipes (Hymenoptera: Braconidae). Arthropod Struc. Develop. 29: 231-240.
Okada, J. and Toh, Y. 1998. Shade response in the escape behavior of the cockroach, Periplaneta americana. Zoo. Sci. 15: 831-835.
Okada, J. and Toh, Y. 2004. Antennal system in cockroach: a biological model of active tactile sensing. International Congress Series 1269: 57-60.
Roeder, K. D. 1948. Organization of the ascending giant fiber system in the cockroach(Periplaneta americana). J. Exp. Zool. 108: 243-262.
Sattelle, D. B., Lummis, S. C. R., Wong, J. F. H. and Rauh, J. J. 1991. Pharmacology of insect GABA receptors. Neurochem. Res. 16: 363-374.
Sattelle, D. B., Pinnock, R. D., Wafford, K. A. and David, J. A. 1988. GABA receptors on the cell-body membrane of an identified insect motor neuron. Proc. R. Soc. Lond. B. 232: 443-456.
Sattelle, D. B., Harrison, J. B., Chen, H. H., Bai, D. and Takeda, M. 2000. Immunocytochemical localization of putative γ-aminobutyric acid receptor subunits in the head ganglia of Periplaneta americana using an anti-RDL C-terminal antibody. Neurosci. Letters 289: 197-200.
Schafer, R. and Sanchez, T. V. 1973. Antennal sensory system of the cockroach Periplaneta americana: Postembryonic development and morphology of the sense organs. J. Comp. Neurol. 149: 335-354.
Schaller, D. 1978. Antennal sensory system of Periplaneta americana L. Cell Tissue Res. 191: 121-139.
Scholfield, C. N. 1982. Antagonism of γ-aminobutyric acid and muscimol by picrotoxin, bicuculline, strychnine, bemegride, leptazol, D-tubocurarine and theophylline in the isolated olfactory cortex. Archives Pharmacol. 318(4): 274-280.
Schuppe, H. and Hengstenberg, R. 1993. Optic properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response. J. Comp. Physiol. 173: 143-149.
Seelinger, G. 1985. Interspecific attractivity of female sex pheromone components of Periplaneta Americana. J. Chem. Ecol. 11: 137-142.
Shimada A., Cutting, G. and Uhl, G. R. 1992. GABAA or GABAc receptor? GABA ρ1 receptor RNA induces bicuculline, barbiturate and benzodiazepine insensitive GABA receptors in Xenopus oocytes. Molecular Pharmacol. 41: 683-687.
Slaughter M. M. 1995. GABAb receptors in the vertebrate retina. Progress in Retina and Eye Res. 14: 293-312.
Smith, A. F. and Schal, C. 1991. Circadian calling behavior in the adult female brown-banded cockroach, Supella longipalpa (F.). J. Insect Behav. 4: 1-14.
Sreng, L. 1993. Cockroach mating behaviors, sex pheromones, and abdominal glands (Dictyoptera: Blaberidae). J. Insect Behav. 6: 715-735.
Stange, G. 1981. The ocellar component of flight equilibrium control in dragonflies. J. Comp. Physiol. 141: 335-347.
Stange, G. and Hengatenberg, R. 1996. Tri-axial, real time logging of fly head movements. J. Neurosci. Methods 64: 209-218.
Swensen, A. M., Golowasch, J., Christie, A. E., Coleman, M. J., Nusbaum, M. P. and Marder, E. 2000. GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis. J. Exp. Biol. 203: 2075-2092.
Toh, Y. 1977. Fine structure of antennal sense organs of the male cockroach, Periplaneta Americana. J. Ultrastruct. Res. 60: 373-394.
Toh, Y. 1981. Fine structure of sense organs on the antennal pedicel and scape of the male cockroach, Periplaneta Americana. J. Ultrastruct. Res. 77: 119-132.
Toh, Y. and Hara, S. 1984. Dorsal ocellar system of the American cockroach. II. Structure of the ocellar tract. J. Ultrastruct. Res. 86: 135-148.
Tomioka, K. and Yukizane, M. 1997. A specific area of the compound eye in the cricket Gryllus bimaculatus sends photic information to the circadian pacemaker in the contralateral optic lobe. J. Comp. Physiol. 180: 63-70.
Wcislo, W. T. 1995. Sensilla numbers and antennal morphology of parastic and non-parasitic bees (Hymenoptera: Apoidea). Im. J. Insect Morphol. & Embryol. 24(1): 63-81.
Wilson, M. 1978. The functional organization of locust ocelli. J. Comp. Physiol. 124: 297-316.
Wisden, W and Seeburg, P. H. 1992. GABAA receptor channels: from subunits to functional entities. Curr. Opin. Neurobiol. 2: 263-269.
Woodward, R. M., Polenzani, L. and Miledi, R. 1991. Effects of steroids on γ-aminobutyric acid receptors expressed in Xenopus oocytes by poly (A) + RNA from mammalian brain and retina. Molecular Pharmacol. 41: 89-103.
Wu, C. Y., Chang, C. S., Tung, L. C. and Lin, J. T. 1985. Receptors in insect. I: The fine structure of the orient fruit fly(Dacus dorsalis Hendel). Bull. Inst. Zool. Academia Sinica. 24: 27-38.
Yang, I. F., Lin, J. T. and Wu, C. Y. 1998. Fine structure of the compound eye of Mallada basalis(Neuroptera: Chrysopidae). Ann. Entomol. Soc. Am. 91(1): 113-121.
Zacharuk, R. Y. 1962. Sense organs of the head of larvae of some Elateridae (Coleoptera): their distribution, structure and innervation. J. Morphol. 111: 1-33.
Zeiner R. and Tichy, H. 1998. Combined effects of olfactory and mechanical inputs in antennal lobe neurons of the cockroach. J. Comp. Physiol. 182: 467-473.
Zill, S. N. and Moran, D. T. 1981. The exoskeleton and insect proprioception: I. Responses of tibial campaniform sensilla to external and muscle regenerated forces in the American cockroach, Periplaneta americana. J. Exp. Biol. 91: 1-24.
Zill, S. N., Ridgel, A. L., DiCaprio, R. A. and Frazier, S. F.. 1999. Load signalling by cockroach trochanteral campaniform sensilla. Brain Res. 822: 271-275.