簡易檢索 / 詳目顯示

研究生: 宋承憲
Song, Cheng-Shian
論文名稱: 碳材上的磷化二元鎳鈷晶體對於產氫反應之催化效果探討
The effect of binary Nickel Cobalt Phosphide with Carbon black for Hydrogen Evolution Reaction
指導教授: 王禎翰
Wang, Jeng-Han
口試委員: 王禎翰
Wang, Jeng-Han
李積琛
Lee, Chi-Shen
吳樸偉
Wu, Pu-Wei
口試日期: 2022/06/23
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 120
中文關鍵詞: 析氫反應電化學化學氣相沉積法鎳鈷磷化物鎳鈷氧化物
英文關鍵詞: Hydrogen evolution, electrochemistry, chemical vapor deposition, Nickel Cobalt phosphide, Nickel Cobalt oxide
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200760
論文種類: 學術論文
相關次數: 點閱:173下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氣是一種未來能源的趨勢,可以取代目前在能源上大量使用的石油燃料,在本研究中,我們調整多種的鎳鈷比例 9/1, 5/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/5, 1/9。研究低成本的鎳鈷磷化物對產氫反應的活性。金屬氧化物利用溶膠凝膠共沉澱法並鍛燒後合成,然後通過化學氣相沉積法製備金屬磷化物。本研究利用能量散射光譜儀(EDX)、高解析耦合電漿光學發射光譜儀(ICP-OES)、X光光電子光譜(XPS)分析催化劑之表面及整體組成,利用X光粉末繞射儀(X-Ray Powder Diffraction analysis, XRD) 、掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 、穿透式電子顯微鏡(Transmission electron microscope, TEM)做晶體結構和表面結構分析。在產氫反應活性的測定,包括過電位和 Tafel 斜率,以及電化學活性表面積由電化學測量確定。本實驗的結果發現,Ni/Co = 1/1 的催化劑具有最好的 HER 活性,Tafel 斜率為 76.8 mV/dec,在-10 mA/cm2時過電位為 93 mV。根據鑑定結果,最好的催化劑Ni/Co=1/1有最大的ECSA為1641 cm2/g,並且樣品保持純Ni2P的晶型下參入Co,可以有效的提升過電位,傾向於 Volmer-Heyrovsky 反應機構並有良好的 Tafel 斜率。

    Hydrogen is a primosing energy and can replace the limited and polluted fossil fuels in the near futhre. In our present study, we examine hydrogen evolution reaction (HER) on low-cost nickel and cobalt phosphides with various Ni/Co ratios of 9/1, 5/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/5, 1/9. Metal oxides have been initially synthesized by sol-gel precipitation method. The phosphides were then fabricated by chemical vapor deposition method. The chemical and surface compositions were characterize by EDX, ICP-OES and XPS; crystallines and surface structures were analyzed by XRD, SEM, TEM; finally, the HER activity, including overpotential and Tafel slope, and ECSA were determinined by electrochemical measurements. Our results found that the catalyst with Ni/Co = 1/1 has the best HER activity with Tafel slope of 76.8 mV/dec and overpotential of 93 mV at 10 mA/cm2. According to the characterizations, the best catalyst of Ni/Co=1/1 shows the largest ECSA of 1641 cm2/g,and has the most purified Ni2P phase with Co doping, ,responsible for the lower overpotential, which favors for the Volmer-Heyrovsky mechanism and results the low Tafel slope.

    第一章 緒論 1 1-1前言 1 1-2產氫反應機制 2 1-3研究動機和實驗方法 6 第二章 實驗方法 9 2-1催化劑合成目的及原理 9 2-1-1催化劑合成目的 10 2-1-2 催化劑合成原理 11 2-2催化劑合成步驟 13 2-2-1氧化鎳鈷合成步驟 13 2-2-2 磷化鎳鈷合成步驟 16 2-3 實驗儀器原理及催化材料鑑定 20 2-3-1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 、能量散射光譜儀(Energy Disperse X-Ray Spectroscopy, EDX) 21 2-3-2 X光粉末繞射儀(X-Ray Powder Diffraction analysis, XRD) 22 2-3-3穿透式電子顯微鏡(Transmission electron microscope, TEM) 24 2-3-4 X光光能子光譜儀(X-ray Photoelectron Spectroscopy, XPS) 24 2-3-5高解析耦合電漿光學發射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometer, ICP-OES) 26 2-3-6鍛燒爐(Furnace) 26 2-3-7高溫管式爐(Oven) 27 2-4 電化學測量準備 27 2-4-1 電極系統及環境 28 2-4-2 電化學醬料製備 29 2-4-3 線性掃描伏安法(LSV) 30 2-4-4 電化學活性表面積(ECSA) 31 第三章 結果與討論 32 3-1不同組成鎳鈷磷化物(NixCoyP)析氫反應活性比較 32 3-1-1 XRD 32 3-1-2 SEM 51 3-1-3 EDX 54 3-1-4 TEM 57 3-1-5 XPS 60 3-1-6 ICP-OES 77 3-2 電化學測試 80 3-2-1 ECSA 80 3-2-2 LSV和Tafel slope 85 第四章 結論 93 參考資料 95 附錄 NiCoP定組成下製程對於析氫反應效果之影響 100 附錄 氧化鎳鈷製程 100 1-1 XRD 101 1-2 SEM 105 1-3 EDX 106 1-4 ECSA 107 1-5 LSV/Tafel slope 109 1-6不同氧化溫度下電化學結果綜合比較 110 附錄 單一組成下磷化製程對於NiCoP析氫反應電化學效果之影響 111 2-1 XRD 112 2-2 SEM 114 2-3 EDX 115 2-4 LSV和Tafel slope 117 2-5 ECSA 118 2-6不同磷化溫度下電化學結果綜合比較 119

    1. Binz, C., et al., Toward Technology-Sensitive Catching-Up Policies: Insights from Renewable Energy in China. World Development, 2017. 96: p. 418-437.
    2. Chu, S. and A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature, 2012. 488(7411): p. 294-303.
    3. Staffell, I., et al., The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 2019. 12(2): p. 463-491.
    4. Palo, D.R., R.A. Dagle, and J.D. Holladay, Methanol Steam Reforming for Hydrogen Production. Chemical Reviews, 2007. 107(10): p. 3992-4021.
    5. Du, C., et al., Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catalysis, 2017. 7(6): p. 4131-4137.
    6. Wang, P., et al., Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2017. 9(31): p. 26001-26007.
    7. Li, C. and J.-B. Baek, Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction. ACS Omega, 2020. 5(1): p. 31-40.
    8. Wang, M., et al., Mesoporous Mn-Doped FeP: Facile Synthesis and Enhanced Electrocatalytic Activity for Hydrogen Evolution in a Wide pH Range. ACS Sustainable Chemistry & Engineering, 2019. 7(14): p. 12419-12427.
    9. Vij, V., et al., Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 2017. 7(10): p. 7196-7225.
    10. Wei, J., et al., Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Letters, 2018. 10(4): p. 75.
    11. Wood, D.L., J.S. Yi, and T.V.J.E.A. Nguyen, Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. 1998. 43: p. 3795-3809.
    12. Shinagawa, T., A.T. Garcia-Esparza, and K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep, 2015. 5: p. 13801.
    13. Hu, C., et al., Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 2020. 10(2).
    14. Liang, H., et al., Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Lett, 2016. 16(12): p. 7718-7725.
    15. Popczun, E.J., et al., Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2013. 135(25): p. 9267-9270.
    16. Shu, T., et al., One-step phosphating synthesis of CoP nanosheet arrays combined with Ni2P as a high-performance electrode for supercapacitors. Nanoscale, 2020. 12(40): p. 20710-20718.
    17. Wang, X., et al., One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angew Chem Int Ed Engl, 2015. 54(28): p. 8188-92.
    18. Long, X., et al., Metallic Iron–Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. Journal of the American Chemical Society, 2015. 137(37): p. 11900-11903.
    19. Wu, L., et al., Cobalt Sulfide Nanotubes (Co9S8) Decorated with Amorphous MoSx as Highly Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Nano Materials, 2018. 1(3): p. 1083-1093.
    20. Schmetterer, C., J. Vizdal, and H. Ipser, A new investigation of the system Ni–P. Intermetallics, 2009. 17(10): p. 826-834.
    21. Bernasconi, R., et al., Nickel Phosphides Fabricated through a Codeposition–Annealing Technique as Low-Cost Electrocatalytic Layers for Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020. 3(7): p. 6525-6535.
    22. Tian, J., et al., Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J Am Chem Soc, 2014. 136(21): p. 7587-90.
    23. Chen, L., et al., Cobalt layered double hydroxides derived CoP/Co2P hybrids for electrocatalytic overall water splitting. Nanoscale, 2018. 10(45): p. 21019-21024.
    24. Li, J., et al., Mechanistic Insights on Ternary Ni2−xCoxP for Hydrogen Evolution and Their Hybrids with Graphene as Highly Efficient and Robust Catalysts for Overall Water Splitting. 2016. 26(37): p. 6785-6796.
    25. Han, L., et al., Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. Nat Commun, 2016. 7: p. 13335.
    26. Wang, J., et al., Hollow-Structured Carbon-Supported Nickel Cobaltite Nanoparticles as an Efficient Bifunctional Electrocatalyst for the Oxygen Reduction and Evolution Reactions. 2016. 8(4): p. 736-742.
    27. Kuboon, S. and Y.H. Hu, Study of NiO−CoO and Co3O4−Ni3O4 Solid Solutions in Multiphase Ni−Co−O Systems. Industrial & Engineering Chemistry Research, 2011. 50(4): p. 2015-2020.
    28. Liu, D., et al., Disproportionation of hypophosphite and phosphite. Dalton Transactions, 2017. 46(19): p. 6366-6378.
    29. Deotale, A.J., et al., Annealing effects on microstrain of cobalt oxide nanoparticles. 2014. p. 325-326.
    30. Lakehal, A., et al., Structural, optical and electrical properties of Ni-doped Co3O4 prepared via Sol-Gel technique. Materials Research, 2018. 21(3).
    31. Langford, J.I. and A.J.C.J.J.o.A.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. 1978. 11: p. 102-113.
    32. Alexander, L. and H.P. Klug, Determination of Crystallite Size with the X‐Ray Spectrometer. 1950. 21(2): p. 137-142.
    33. Kusoglu, A. and A.Z. Weber, New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chemical Reviews, 2017. 117(3): p. 987-1104.
    34. Chen, J., W. Xifan, and A. Selloni, Electronic Structure and Bonding Properties of Cobalt Oxide in the Spinel Structure. Physical Review B - PHYS REV B, 2011. 83.
    35. Diao, C.C., et al., Morphological, Optical, and Electrical Properties of p-type Nickel Oxide Thin Films by Nonvacuum Deposition. Nanomaterials (Basel), 2020. 10(4).
    36. Seidov, Z., et al., Magnetic properties of Co3O4 polycrystal powder. Ceramics International, 2016. 42(11): p. 12928-12931.
    37. Zaitsev, A. and N. Zaitseva, Thermodynamic Properties of Nickel Phosphides. Doklady Physical Chemistry, 2002. 387: p. 295-298.
    38. Carenco, S., et al., Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev, 2013. 113(10): p. 7981-8065.
    39. Fan, B., et al., A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Waste Management & Research, 2016. 34.
    40. Rakshit, S., et al., Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: A cost effective and eco friendly approach. RSC Advances, 2013. 3: p. 19348.
    41. Peng, C.-Y., et al., Nanostructured Ni2P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia–Borane. 2015. 54(52): p. 15725-15729.
    42. Liu, Y., et al., Hollow cobalt phosphide octahedral pre-catalysts with exceptionally high intrinsic catalytic activity for electro-oxidation of water and methanol. Journal of Materials Chemistry A, 2018. 6.
    43. Nesbitt, H.W., D. Legrand, and G.M. Bancroft, Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Physics and Chemistry of Minerals, 2000. 27(5): p. 357-366.
    44. Elsener, B., et al., Effect of phosphorus concentration on the electronic structure of nanocrystalline electrodeposited Ni–P alloys: an XPS and XAES investigation. Surface and Interface Analysis, 2008. 40(5): p. 919-926.
    45. Chen, Y., et al., Microscopic mechanism for unipolar resistive switching behaviour of nickel oxides. Journal of Physics D: Applied Physics, 2012. 45: p. 065303.
    46. Pan, Y., et al., Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. Journal of Materials Chemistry A, 2015. 3(4): p. 1656-1665.
    47. Mansour, A.N., Characterization of NiO by XPS. Surface Science Spectra, 1994. 3(3): p. 231-238.
    48. Yin, D., et al., Cobalt Phosphide (Co2P) with Notable Electrocatalytic Activity Designed for Sensitive and Selective Enzymeless Bioanalysis of Hydrogen Peroxide. Nanoscale Research Letters, 2021. 16.
    49. Aboelazm, E.A.A., G.A.M. Ali, and F. ChongK. Cobalt Oxide Supercapacitor Electrode Recovered from Spent Lithium-Ion Battery. 2018.
    50. Jebaslinhepzybai, B.T., et al., One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts. International Journal of Hydrogen Energy, 2021. 46(42): p. 21924-21938.
    51. Alex, C., et al., Competing Effect of Co3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co3O4 Systems in Alkaline Medium. ACS Applied Energy Materials, 2020. 3(6): p. 5439-5447.
    52. Hu, X., et al., 2D Fe-containing cobalt phosphide/cobalt oxide lateral heterostructure with enhanced activity for oxygen evolution reaction. Nano Energy, 2019. 56: p. 109-117.
    53. Petitto, S. and M.A. Langell, Surface composition and structure of Co3O4(110) and the effect of impurity segregation. Journal of Vacuum Science & Technology A - J VAC SCI TECHNOL A, 2004. 22: p. 1690-1696.
    54. Su, L., et al., Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chem Sci, 2019. 10(7): p. 2019-2024.
    55. Petitto, S.C. and M.A. Langell, Surface composition and structure of Co3O4(110) and the effect of impurity segregation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004. 22(4): p. 1690-1696.
    56. Zhao, L., et al., Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. National Science Review, 2019. 7(1): p. 27-36.
    57. Gu, L., et al., A Facile Strategy to Synthesize Cobalt-Based Self-Supported Material for Electrocatalytic Water Splitting. 2017. 34(10): p. 1700189.
    58. Callejas, J.F., et al., Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. ACS Nano, 2014. 8(11): p. 11101-11107.
    59. Huo, S., et al., Synthesis of functional Ni2P/CC catalyst and the robust performances in hydrogen evolution reaction and nitrate reduction. International Journal of Hydrogen Energy, 2020. 45(7): p. 4015-4025.
    60. Li, F., et al., Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst. Small, 2017. 13: p. 1701167.
    61. Ma, D., et al., NiCoP/CoP Nanoparticles Supported on Ti4O7 as the Electrocatalyst Possessing an Excellent Catalytic Performance toward the Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering, 2018. 6(11): p. 14275-14282.

    下載圖示
    QR CODE