簡易檢索 / 詳目顯示

研究生: 王雅玲
Ya-Ling Wang
論文名稱: 多頻道有機壓電感測器研製與應用
Multichannel piezoelectric crystal detection system with principal component analysis for air pollutants from PVC plants
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 94
中文關鍵詞: 多頻道壓電感測器主成分分析
英文關鍵詞: Multichannel Multichannel piezoelectric crystal detection system, Principal Component Analysis,PCA
論文種類: 學術論文
相關次數: 點閱:233下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電晶體感測器是利用塗佈在石英晶體電極表面的辨識元,即所謂的塗佈物種,吸附待測分子造成電極表面的質量產生變化,導致石英壓電晶體本身共振頻率的下降,在藉由此頻率變化值來了解待測物的特性。本研究利用自行研製之一六個頻道(六個石英晶片)之多頻道氣體壓電感測器,用以偵測由高分子工業常用來溶解高分子之有機溶劑(如:甲醇(Methanol)、二硫化碳(Carbon disulfide)、二甲基甲醯胺(N,N-Dimethyl formamide)等)而散佈在高分子工廠空氣中之有機污染物。
    本研究中亦利用電腦主成份分析法(Principal Component Analysis,PCA)來分析各頻道對各有機污染物之頻率訊號,以助於眾多塗佈物種中選擇出最適合偵測目的的塗佈物質。進行主成份分析後,前三個主成份便可解釋總變異量的98.66﹪,且C60/PPA、Polyethylene glycol、Nafion、Triphenyl phosphine、Cryptand-22及Polyvinyl pyrrolidone等六種在主成份分析中具有代表性的石英晶體塗佈物被選出。利用主成份分析法中的成分分數,以成份1(Factor 1 or PRIN 1)為X軸,成份2(Factor 2 or PRIN 2)為Y軸作圖,所得之X-Y主成份分析散佈圖(PCA Scores Map),能夠有效地分辨出Methanol、Formic acid、Propionaldehyde、Carbon disulfide及N,N-Dimethyl formamide這五種不同的揮發性有機污染物。再者,利用雷達圖描繪不同有機污染物的訊號強度,可以發現每種揮發性有機分子都有其獨特型態的雷達圖,可以此來作為辨識的依據。
    本研究中也分別探討了各種石英晶體塗佈物之塗佈量效應、各種揮發性有機污染物之濃度效應以及水氣所造成的影響,結果顯示此自製多頻道氣體感測器對五種有機物均具有很不錯的偵測下限。而在水氣所造成的影響實驗中,發現所選用的六種塗佈物中有些塗佈物質具有吸溼性,會受到水氣的干擾,且隨著相對溼度的增加,訊號的漂移也愈顯著,尤其以Polyvinyl pyrrolidone作為塗佈膜之石英晶體感應頻率變化受到水氣的干擾較嚴重。
    而後嘗試著探討混合有機污染物氣體之雷達圖和濃度關係,結果發現可以藉由觀察混合有機物的雷達圖譜中某幾條特定軸之訊號強度,來判別混合有機污染物中特定氣體的可能存在情形,以提供參考。往後應可朝此發展,以期將來可將此系統方法應用於各高分子工業,作為辨識所排放之空氣污染物成份及污染指標。

    Piezoelectric(PZ) quartz crystal is well-known to be sensitive to pressure exerted on its surface. The vibrational frequency of an oscillating piezoelectric quartz crystal decreases when a foreign substrance is adsorbed onto its surface. This phenomenon enables us to detect the characteristics of the substance. In this study, a multi-channel piezoelectric quartz crystal gas detection system with various organic material coated quartz crystals and a home-made computer interface for data processing were prepared and employed to detect various organic pollutants from PVC plants such as methanol, formic acid, propionaldehyde, carbon disulfide and N,N-dimethyl formamide.
    The principal component analysis (PCA) method was than applied to analyze the signals from each channel with each coating material, and the appropriate coating materials for organic pollutants were selected. After performing PCA assay, the data set obtained from 29 piezoelectric crystal sensors for 5 analytes and the first three factors of the reduced set explained 98.66﹪of the variation. Six representative coating materials such as C60/PPA, Polyethylene glycol, Nafion, Triphenyl phosphine, Cryptand-22 and Polyvinyl pyrrolidone were selected. Five vaporized organic pollutants, Methanol、Formic acid、Propionaldehyde、Carbon disulfide and N,N-Dimethyl formamide could be effectively distinguished from PCA Scores Map generated by employing factor 1(PRIN1) as the x-axis and factor 2(PRIN2) as the y-axis. Furthermore, since different evaporated organic molecules tend to have distinguishing profile discrimination maps, profile discrimination maps can be used as finger-prints for distinction.
    Effects of coating load, concentration and interference of water were also investigated and discussed. The result of multi-channel piezoelectric quartz crystal gas detection system showed the good detection limit, but the detection with some coating materials such as Polyvinyl pyrrolidone was found to be interfered by water.
    The relationship between concentration and profile discrimination maps of organic mixtures with methanol, carbon disulfide, propionaldehyde and N,N-dimethyl formamide detected by the six-channel piezoelectric detection system were also probed and discussed afterward in this study. By comparing the signal intensity of specific axis in profile discrimination maps of the organic mixtures, specific gases could be identified. The multichannel piezoelectric crystal detection system developed in this study can be potentially expected to be applied for organic pollutants from other polymer industrial plants.

    目錄 Ⅰ 圖表目錄 Ⅲ 中文摘要 Ⅵ Abstract Ⅷ 第一章 緒論 1 1-1研究緣起 1 1-2氣體化學感測器簡介 4 1-2-1化學感測器簡介 4 1-2-2氣體感測器 6 1-3壓電晶體 9 1-3-1壓電晶體之壓電性 9 1-3-2石英振盪器 11 1-3-3 AT-cut石英振盪器的特性 13 1-3-4石英振盪器的線路 16 1-3-5振盪頻率的量測 17 1-3-6石英微量天平 19 1-3-7氣體石英壓電感測器 24 1-4主成份分析 29 1-4-1基本原理 30 1-4-2主成份分析之應用 32 1-4-3成份分數 34 第二章 實驗部分 35 2-1藥品及溶劑 35 2-2石英晶體的處理 37 2-2-1石英晶體 37 2-2-2表面塗佈液配製 37 2-2-3表面塗佈法 38 2-3實驗系統與方法 39 2-3-1實驗裝置之建立 39 2-3-2多頻道石英壓電晶體氣相實驗系統之實驗步驟 42 2-3-3 SAS統計軟體 43 第三章 結果與討論 46 3-1多頻道石英壓電感測器塗佈物質之選擇 46 3-2各種不同揮發性有機物之主成份分析散佈圖 57 3-3各種揮發性有機物之雷達辨識圖 59 3-4塗佈量對感應頻率變化的影響 62 3-5待測物濃度效應對感應頻率變化的影響 69 3-6混合有機污染物對感應頻率變化的影響 78 3-7水氣對感應頻率變化的影響 84 第四章 結論 87 參考資料 88

    參考資料
    1. Atkinson, R., Gas-Phase Tropospheric Chemistry of Organic Compounds:A Review. Atmospheric Environment, 1990, volume:24A, 1-41.
    2. 行政院勞工委員會, 勞工作業環境空氣中有害物容許濃度標準.
    3. 葉陶淵, 化學感測器中氣體感測器的新動向. 科儀新知, 1999, 20(4), 72-76.
    4. 蔡嬪嬪, 曾明漢, 氣體感測器之簡介、應用及市場. 材料與社會, 1992, 68(8), 50-77.
    5. 施正雄, 化學感測器整合計劃研究規劃與成果報導. 科學發展月刊, 1999, 27(10), 1184-1197.
    6. Hoefer, U.; Kuhner, G.; Schweizer, W.; Sulz, G.; Steiner, K., CO and CO2 thin-film SnO2 gas sensors for CO and CO2. Sensors and Actuators B, 1994, 22, 115-119.
    7. Eklov, T.; Lundstrom, I., Distributed sensor system for quantification of individual components in a multiple gas mixture. Anal. Chem., 1999, 71, 3544-3550.
    8. Ono, M.; Shimanoe, K.; Miura, N.; Yamazoe, N., Solid-state amperometric sensor based on a sodium ion conductor for detection of total NOx in an atmospheric environment. Electrochemical and Solid-state Letters, 1999, 2(7), 349-351.
    9. Grate, J. W., Acoustic Wave Microsensor Arrays for Vapor Sensing. Chem. Rev., 2000, 100, 2627-2648.
    10. Lu, C.; Czanderna, C. A. W., Applications of piezoelectric quartz crystal microbalance. Elsevier Science. New York, 1984.
    11. 吳朗. 電子陶瓷-壓電. 全欣科技圖書, 1994.
    12. 吳朗. 感測與轉換原理,元件與應用, 全欣科技圖書, 1992.
    13. 彭成鑑, 壓電材料. 科儀新知, 1995, 16, 18-29.
    14. Buttry, D. A.; Ward, M. D., Measuerment of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev., 1992, 1355-1379.
    15. Ikeda, T., Fundamentals of piezoelectricity. Oxford. Sci. Publ, 1990.
    16. Geddes, L. A.; Baker, L. E., Principle of applied biomedical instrumentation. (3rd Ed.) John Wiley & Sons. New York. 1989, 163.
    17. Martin, S. J.; Frye, G. C.; Ricco, A. J., Effect of surface roughness on the response of thickness-shear mode resonators in liquids. Anal. Chem., 1993, 65, 2910-2922.
    18. Levenson, L. L., ”Cimento”, Suppl.2, Ser.1, 1967, 5, 321.
    19. Deakin, M. R.; Buttry, D. A., Anal. Chem., 1989, 61, 181.
    20. Buttry, A.; Word, M. D., Chem. Rev., 1992, 92, 1355.
    21. 紀培錦. 新電子科技雜誌. 1989, 17, 196-207.
    22. 湯進德. 微電子界面技術. 全華科技圖書, 1984.
    23. 袁帝文; 黃柏鈞, 數位邏輯設計與分析. 全欣科技圖書, 1992.
    24. 江宗達; 鍾健文編譯, IBM PC與感測器介面的探討. 全華科技圖書, 1994.
    25. Hlavay, J.; Guilbault, G. G., Applications of the piezoelectric crystal detector in analytical chemistry. Anal. Chem., 1977, 49(13), 1890-1898.
    26. Sauerbrey, G. Z., Z. Phys. 1959, 155, 206.
    27. 施正雄, 壓電晶體化學感測器開發與應用. 科儀新知, 2000, 21(4), 61-72.
    28. Mandelis; Christofides, Physics, chemistry and technology of solid state gas sensor devices. John Wiley & Sons. New York, 1993.
    29. Thompson, M.; Kipling, A. L.; Rajakovic, L. V., Thickness-shear-mode acoustic wave sensors in the liquid phase:A review. Analyst, 1991, 116, 881-890.
    30. Grate, J. W.; Frye, G. C., Techniques; markets. acoustic wave sensors; In Sensors Update Vol. 2. Sensor Technology, Germany, 1996, 38-88.
    31. Snow, A.; Wohltjen, H., Poly(ethylene maleate)-cyclopentadiene: a model reactive polymer-vapor system for evaluation of a SAW microsensor. Anal. Chem., 1984, 56, 1411-1416.
    32. King, W. H., Piezoelectric sorption detector. Anal. Chem., 1964, 36, 1735-1739.
    33. Auge, J.; Hauptmann, P.; Hartmann, J.; Riisler, S.; Lucklum, R., Versatile microcontrolled gas sensor array system using the quartz microbalance principle and pattern recognition methods. Sensors and Actuators B, 1995, 26-27, 181-186.
    34. Sugimoto, I., Analyst, 1998, 123, 1849.
    35. Shih, J. S.; Chao, Y. C.; Sung, M. F.; Gau, G. J.; Chiou, C. S., Piezoelectric crystal microbalance chemical sensors based on fullerene C60. Sensors and Actuators B, 2001, 76, 347-353.
    36. Chang, P.; Shih, J. S., Application of piezoelectric Ru(Ⅲ)/cryptand coated quartz crystal gas chromatographic detector for olefins. Anal. Chem. Acta., 1999, 380, 55-62.
    37. Chang, P.; Shih, J. S., Multi-channel piezoelectric quartz crystal sensor for organic vapours. Ana. Chim. Acta., 2000, 403, 39-48.
    38. Person, On Lines and Planes of Closet Fit of System of Points in Space. Philosophy Magazine, 1901, 6, 559-572.
    39. Hotelling, H., Analysis of a Complex of Statistical Variables into Principal Components. Journal of Educational Psychology, 1933, 24, 417-441.
    40. Hotelling, H., Relations Between Two Sets of Variates. Biometrika, 1936, 28, 321-337.
    41. 林清山, 多變項分析統計法, 東華書局, 1986.
    42. Nanto, H.; Tsubakino, S.; Habara, M.; Kondo, K.; Morita, T.; Douguchi, Y.; Nakazumi, H.; Waite, R. I., A novel chemical sensor using CH3Si(OCH3)3 sol-gel thin film coated quartz-resonator microbalance. Sensor and Actuators B, 1996, 34, 312-316.
    43. Nanto, H.; Kondo, K.; Habara, M.; Douguchi, Y.; Waite, R. I.; Nakazumi, H., Identification of aromas from alcohols using a Japanese-lacquer-film-coated quartz resonator gas sensor in conjunction with pattern recognition analysis. Sensor and Actuators B, 1996, 35, 183-186.
    44. 游若琳, 碳六十/聚合物石英壓電晶體偵測器之研製與應用. 國立台灣師範大學化學研究所碩士論文, 1999.
    45. 張紹勳, 林秀娟, SAS/PC統計分析與實務應用. 松崗出版, 1991, 9-64-9-85.
    46. 凌永健, 陳秋雲, 黃依萍, 化學分析的偵測極限(上). 科儀新知, 1994, 16(1), 70-83.
    47. 張平, 有機氣體石英壓電晶體感測器的研製與應用. 國立台灣師範大學化學研究所博士論文, 2000.
    48. 郭佳文, 無機氣體壓電晶體感測器研製與應用. 國立台灣師範大學化學研究所碩士論文, 2000.
    49. Cao, Z.; Gao, D.; Lei, Z. G.; Lin, H. G.; Yu, R. Q., Determination of carboxylic acid vapour by a thickness-sheer-mode acoustic wave sensor coated with crown ethers. Talanta, 1997, 44, 1413-1421.
    50. Nakamura, K.; Nakamoto, T.; Moriizumi, T., Classification and evaluation of sensing films for QCM odor sensors by steady-state sensor response measurement. Sensors and Actuators B, 2000, 69, 295-301.
    51. Maekawa, T.; Suzuki, K.; Takada, T.; Kobayashi, T.; Egashira, M., Odor identification using a SnO2-based sensor array. Sensors and Actuators B, 2001, 80, 51-58.
    52. Nakamoto, T.; Iguchi, A.; Moriizumi, T., Vapor supply method in odor sensing system and analysis of transient sensor responses. Sensors and Actuators B, 2000, 71, 155-160.
    53. Jurs, P. C.; Bakken, G. A.; McClelland, H. E., Computational Methods for the Analysis of Chemical Sensor Array Data from Volatile Analysis. Chem. Rev., 2000, 100, 2649-2678.

    QR CODE