簡易檢索 / 詳目顯示

研究生: 吳品萱
Wu, Pin-Hsuan
論文名稱: 科學傳播與教育的結合:科學教育理念下的電視科學新聞對學習者的科學-覺知、享受、興趣、觀點形成、與理解(AEIOU)之影響
Bridging Science communication/education: The impact of science education initiated TV news on learners' perceived Awareness, Enjoyment, Interest, Opinion Formation, and Understanding (AEIOU)
指導教授: 張俊彥
Chang, Chun-Yen
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 58
中文關鍵詞: 科學傳播AEIOU電視科學新聞媒體科學素養
英文關鍵詞: Science Communication, AEIOU, Scientific TV News, Scientific Literacy in Media
DOI URL: https://doi.org/10.6345/NTNU202204840
論文種類: 學術論文
相關次數: 點閱:225下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討科學教育理念下所製播出的電視科學新聞(Educational Science Communication),與一般的電視科學新聞(Daily Science Communication)對於學習者的差異,包含對科學的覺知(Awareness)、享受(Enjoyment)、興趣(Interest)、觀點形成(Opinion formation)、與理解(Understanding),並以學習者的媒體科學素養(Scientific Literacy in Media)代表個人在學校和媒體中的科學學習程度指標,將學習者分為高/低SLiM組再做深入的探討。其中,AEIU係以量化研究法,O則係以質性研究法做分析,分析結果顯示:(1)對於低SLiM組的學習者,其科學興趣(Interest)在科教理念下的電視科學新聞中(M = 12.47, SD = 2.42) (t = -2.053, p ≤ .05)有顯著的提升。(2)對於高SLiM組的學習者,其科學理解(Understanding) 在科教理念下的電視科學新聞中(M = 2.06, SD = 1.01) (t = -2.01, p ≤ .05)有顯著的提升。(3)對於全部的學習者,在科教理念下的電視科學新聞中,他們會使用較多的科學概念支持自己的觀點(Opinion formation)。(4)對於全部的學習者,其科學覺知(Awareness)、與享受(Enjoyment)皆沒有顯著差異。

    The purpose of this study was to explore the differences toward learners’ perceived scientific Awareness (A), Enjoyment (E), Interest (I), Opinion Formation (O), and Understanding (U) between science education initiated scientific TV news (i.e., Educational Science Communication, ESC) and general scientific TV news (i.e., Daily Science Communication, DSC). By adopting Scientific Literacy in Media (SLiM) as individual level of science learning in school and media, we divided learners into High/Low SLiM group to investigate deeply. The methodology we used to analyze AEIU was quantitative, and O was qualitative. The results revealed that: (1) For low SLiM learners, scientific interest (I) significantly promoted under Educational Science Communication (M = 12.47, SD = 2.42) (t = -2.053, p ≤ .05). (2) For high SLiM learners, scientific understanding (U) significantly promoted under Educational Science Communication (M = 2.06, SD = 1.01) (t = -2.01, p ≤ .05). (3) For all learners, they used more scientific concepts to support their opinions (O) under Educational Science Communication. (4) For all learners, scientific awareness (A) and enjoyment (E) were not significantly different under Educational Science Communication.

    Chapter1 Introduction 4 1-1 Background of the Study 4 1-2 Purpose of the Study 6 1-3 Limit of the Study 7 1-4 Definition of Terms 7 Chapter2 Literature Review 8 2-1 Historical Development of Science Education and Science Communication 8 2-1-1 Main Differences between Science Education and Science Communication 8 2-1-2 Turning Point to Bridge Science Education and Science Communication 10 2-2 Broadcast TV News to Bridge Science Education and Science Communication 13 2-2-1 Cognitive Loading Theory – 90 s in Length – Well Structured Content 13 2-2-2 Multimedia – Computer Simulation/Animation – Learn Complex Scientific Concept 15 2-2-3 News Values – Domestic Science Development – Promotion of PUS 16 2-2-4 Framing – Journalist vs Scientist – Sharing Specialty 17 Chapter3 Methodology 18 3-1 Research Framework 18 3-2 Participants and its background information 19 3-3 Research Procedure 22 3-4 AEIOU Instrument Development 24 3-4-1 Questions Design 24 3-4-2 Validity 25 3-5 Factor Analysis of A, E, and I 25 3-6 Reliability in A, E, I, and U 27 3-7 Data Analysis 28 3-7-1 Simple Linear Regression 28 3-7-2 Independent Samples t Test 28 3-7-3 Coding Analysis 29 Chapter4 Results 30 4-1 Simple Linear Regression Results of SLiM 30 4-2 Independent Samples t Test Results of AEIU 30 4-3 Coding Analysis of Opinion Formation 34 4-3-1 Q1 “In your opinion, please describe Taipei City’s living conditions and environment” 36 4-3-2 Q2 “When an earthquake hits, is a taller building or a shorter building safer? Describe your opinion.” 37 4-3-3 Q3 “In your opinion, how might carbon dioxide affect our living environment?” 38 Chapter5 Discussion 39 5-1 Awareness 39 52 Enjoyment 40 5-3 Interest 41 5-4 Opinion Formation 43 5-5 Understanding 43 Chapter6 Conclusion & Future Research 45 6-1 Conclusion 45 6-2 Future Research 45 Reference 47 Appendix 1. Analysis Version of AEIOU Instrument 51 Appendix 2. The Code Book and Examples 55 Appendix 3. The Scoring way in Understanding Dimension -Take Q4 for Example 56 Appendix 4. The Example of Coding in Opinion Dimension 57

    Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945-1969.
    Baram‐Tsabari, A., & Osborne, J. (2015). Bridging science education and science communication research. Journal of Research in Science Teaching, 52(2), 135-144.
    Berger, P., & Luckmann, T. (1966). The social construction of knowledge: A treatise in the sociology of knowledge. Open Road Media: Soho, NY, USA.
    Burns, T. W., O'Connor, D. J., & Stocklmayer, S. M. (2003). Science Communication: A Contemporary Definition. the public Understanding of Science, 12(2), 183-202.
    Bucchi, M. (1998). Images of science in the classroom: wallcharts and science education 1850–1920. The British Journal for the History of Science, 31(02), 161-184.
    Bransford, J. D., Brown, A. L., and Cocking, R. (2000). How People Learn, National Academy Press, Washington, DC.
    Cooper, G. (1998). Research into cognitive load theory and instructional design at UNSW. Retrieved August, 8, 2003.
    Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848-867.
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334.
    Cuban, L. (1999). How scholars trumped teachers: Change without reform in university curriculum, teaching, and research, 1890-1990. Teachers College Press.
    Davis, P. R., & Russ, R. S. (2015). Dynamic framing in the communication of scientific research: Texts and interactions. Journal of Research in Science Teaching, 52(2), 221-252.
    DeHart, H. (1958). Science literacy: Its meaning for American Schools. Educational Leadership, 16, 13–16.
    DeBoer, G. E. (1991). A History of Ideas in Science Education: Implications for Practice. Teachers College Press, 1234 Amsterdam Avenue, New York, NY 10027.
    DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582-601.
    Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational researcher, 23(7), 5-12.
    Dimopoulos, K., & Koulaidis, V. (2002). The socio-epistemic constitution of science and technology in the Greek press: An analysis of its presentation. the public Understanding of Science, 11, 225-241.

    Fisher, W. R. (1989). Human communication as narration: Toward a philosophy of reason, value, and action.
    Friedman, S. M., Dunwoody, S., & Rogers, C. L. (1986). Scientists and journalists. AAAS, USA.
    Galtung, J., & Ruge, M. H. (1965). The structure of foreign news the presentation of the Congo, Cuba and Cyprus Crises in four Norwegian newspapers. Journal of peace research, 2(1), 64-90.
    Godin, B., & Gingras, Y. (2000). What is scientific and technological culture and how is it measured? A multidimensional model. the public Understanding of Science, 9(1), 43-58.
    Galtung, J., Ruge, M.: The structure of foreign news. Journal of peace research 2 (1965) 64–90.
    Giroux, H. (1988) Teachers as Intellectuals. New York: Bergin & Garvey.
    Gilbert, J. K., Stocklmayer, S. M., & Garnett, R. (1999). Mental modeling in science and technology centres: What are visitors really doing. In International Conference on Learning Science in Informal Contexts, Canberra (pp. 16-32).
    Goffman, E. (1974) Frame Analysis. New York, NY: Harper Colophon Books.
    Hair, J. F., Black, B., Babin, B., Anderson, R. E., & Tatham, R. L. (2006). Multivariate Data Analysis (6th ed.). New York: Macmillan.
    Hinnant A, Len-Rios M. Tacit understandings of health lit- eracy: interview and survey research with health journalists. Sci Commun 2009; 31: 84–115.
    Hooper, D., Coughlan, J., & Mullen, M.R. (2008). Structural equation modelling: Guidelines for determining model fit. Journal of Business Research Methods, 6, 53–60.
    Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. doi: 10.1080/10705519909540118.
    Kerckhove, D. D. (1995). The skin of culture: Investigating the new electronic reality. Toronto: Somerville House.
    Kendeou, P., & Van Den Broek, P. (2005). The Effects of Readers' Misconceptions on Comprehension of Scientific Text. Journal of Educational Psychology, 97(2), 235.
    Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: Guilford Press.
    Kolstø, S. D. (2000). Consensus projects: Teaching science for citizenship. International Journal of Science Education, 22(6), 645-664.
    Krieghbaum, H. (1957). When Doctors Meet Reporters. A Franc Discussion by Science Writers and Physicians of the Controversy between the Press and the Medical Profession, New York.
    Krieghbaum, H. (1967). Science and the Mass Media. New York University Press, New York.
    Layton Jr, E. T. (1986). The Revolt of the Engineers. Social Responsibility and the American Engineering Profession. Johns Hopkins University Press, 701 W. 40th St., Baltimore, MD 21211.
    MacCallum, R. C., Browne, M. W., & Sugarwara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.
    MacDonald, S. P. (2005). The language of journalism in treatments of hormone replacement news. Written Communication, 22(3), 275-297.
    Mautone, P. D., & Mayer, R. E. (2001). Signaling as a cognitive guide in multimedia learning. Journal of Educational Psychology, 93(2), 377.
    McCall, R. B. (1988). Science and the press: Like oil and water?. American Psychologist, 43(2), 87.
    Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of educational psychology, 91(2), 358.
    Mayer, R. E., Heiser, J., & Lonn, S. (2001). Cognitive constraints on multimedia learning: When presenting more material results in less understanding. Journal of educational psychology, 93(1), 187.
    Mayer, R. E., & Moreno, R. (2002). Animation as an aid to multimedia learning. Educational psychology review, 14(1), 87-99.
    Mayer, R. E., Mathias, A., & Wetzell, K. (2002). Fostering understanding of multimedia messages through pre-training: Evidence for a two-stage theory of mental model construction. Journal of Experimental Psychology: Applied, 8(3), 147.
    Mayer, R. E., Sobko, K., & Mautone, P. D. (2003). Social cues in multimedia learning: Role of speaker's voice. Journal of Educational Psychology, 95(2), 419.
    Mayer, R. E. (2009). Multimedia learning (2nd ed). New York: Cambridge University Press.
    Millar, R. (1996). Towards a science curriculum for the public understanding. School science review, 77(280), 7-18.
    Nisbet, M. (2009). Communicating climate change: Why frames matter for the public engagement. Environment: Science and Policy for Sustainable Development 51, 12–23.
    Nisbet, M., Brossard, D., & Kroepsch, A. (2003). Framing science the stem cell controversy in an age of press/politics. The International Journal of Press/Politics, 8, 36–70.
    Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224-240.
    Nunnally, J. (1978). Psychometric methods.
    Petrie A, Sabin C. 3rd ed. Oxford: Wiley-Blackwell; 2009. Medical statistics at a glance.
    Priest, S. H. (2001). Misplaced faith communication variables as predictors of encouragement for biotechnology development. Science Communication, 23(2), 97-110.
    Roberts DA (2007) Scientific literacy/science literacy. In: Abell S and Ledermann N (eds) Handbook of Research on Science Education. Mahwah, NJ: Lawrence Erlbaum Associates, 729–780.
Science and Engineering Indicators (2008) National Science Foundation, Volume 1. Arlington, VA: National Science Board.
    Robin Millar, Towards a science curriculum for the public understanding, School Science Review 77, no. 280 (1996): 7–18.
    Rundgren, C. J., Rundgren, S. N. C., Tseng, Y. H., Lin, P. L., & Chang, C. Y. (2010). Are you SLiM? Developing an instrument for civic scientific literacy measurement (SLiM) based on media coverage. the public Understanding of Science, 21(6), 759-773.
    Rogoff, B., Paradise, R., Arauz, R. M., Correa-Chávez, M., & Angelillo, C. (2003). Firsthand learning through intent participation. Annual review of psychology, 54(1), 175-203.
    Sanchez, J. (2009). Barriers to student learning in Second Life. Library Technology Reports, 45(2): 29–34.
    Shen, B. S. (1975). Science literacy and the the public understanding of science. Communication of scientific information, 44-52.
    Southwell, B. G., & Torres, A. (2006). Connecting interpersonal and mass communication: Science news exposure, perceived ability to understand science, and conversation. Communication Monographs, 73(3), 334-350.
    Sturgis, P., & Allum, N. (2004). Science in society: re-evaluating the deficit model of the public attitudes. the public understanding of science, 13(1), 55-74.
    Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295-312.
    Sweller, J., Chandler, P., Tierney, P., & Cooper, M. (1990). Cognitive load as a factor in the structuring of technical material. Journal of Experimental Psychology, 119, 176-192.
    Tewksbury, D., & Scheufele, D. (2009). New York: Routledge. pp. 17–33.
    Wynne, B. (1996). Misunderstood misunderstandings: Social identities and the public uptake of science. In A. Irwin & B. Wynne (Eds.), Misunderstanding science. Cambridge: Cambridge University Press.
    Wu, L. Y., Chang, C. Y., Liu, H. H., Wu, P. H., Lei, Y. C., & Lu, H. Y. (2015). Piloting a collaboration between education and broadcast journalism in Taiwan. Science Communication.
    林靜伶. (2000). 語藝批評—理論與實踐. 台北: 五南.
    林照真(2009)。電視新聞就是收視率商品:對每分鐘收視率的批判性解讀。新聞學研究,99,79-117。
    李旺龍(2014)。科學家該怎麼投入科學傳播。科學月刊,531,194-198。
    莫季雍(2014)。科普、科傳與科學傳播的人才培育。科學月刊,531,204-210。
    黃台珠主編 (2012):2012年科技與語文素養計畫─公民科技素養調查研究執行報告。國科會計畫執行報告。高雄市:中山大學公民素養推動研究中心。
    黃俊儒、簡妙如 (2004)。科學新聞之類型分析及對科學教學之意涵。中華民國第二十屆科學教育學術研討會,高雄:高雄師範大學。
    黃俊儒、簡妙如 (2006)。科學新聞文本的論述層次及結構分佈:構思另個科學傳播的起點。新聞學研究,86,135-170。

    黃俊儒,簡妙如(2010)。資訊時代中的公民素養 - 論科學傳播素養之內涵及建立。新聞學研究,105,127-166。
    蔡鴻濱 (2004)。語藝批評方法在網路文化研究之應用與探討。資訊社會研究,6,91-126.
    謝瀛春 (1992)。全國科技會議新聞之分析。新聞學研究,46,131-147。
    關尚仁(2010)。2010年科學傳播工作坊(成果報告),行政院國家科學委員會。
    關尚仁(2011)。科學傳播發展源流。在政治大學廣播電視學系編著,2011科學傳播研討會。台北市:政治大學廣播電視學系。
    韓尚平(1990)。台灣科技新聞報導的現況及問題。科學月刊,21(8),617-620。
    靳知勤、陳文慈 (2007)。臺中縣市國小自然科教師對以 STS 議題從事教學之調查研究。科學教育學刊,15(1),25-52。

    下載圖示
    QR CODE