研究生: |
王奕傑 Wang, Yi-Chieh |
---|---|
論文名稱: |
脊椎動物與節肢動物掠食者對亞熱帶森林常綠喬木—紅楠(Machilus thunbergii)之跨營養階效應 Indirect Trophic Effects of Vertebrate and Arthropod Predators on an Evergreen Tree Machilus thunbergia in a Subtropical Forest |
指導教授: |
李佩珍
Lee, Pei-Jen |
口試委員: |
徐堉峰
Hsu, Yu-Feng 何傳愷 Ho, Chuan-Kai 李佩珍 Lee, Pei-Jen |
口試日期: | 2022/09/08 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 生態功能 、食物網 、動植物交互關係 、間接效應 、營養瀑布 |
英文關鍵詞: | Ecological function, food web, indirect effect, plant-animal interaction, trophic cascade |
研究方法: | 實驗設計法 、 調查研究 、 現象分析 |
DOI URL: | http://doi.org/10.6345/NTNU202201798 |
論文種類: | 學術論文 |
相關次數: | 點閱:96 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
掠食者透過對植食者的捕食影響植物,亦即掠食者之跨營養階效應(indirect trophic effect),往往會因掠食者間的獵物區隔或同功群內捕食而產生不同的方向與強度。因此,在評估掠食者群聚之跨營養階效應時,需要考量掠食者的種間互動。本研究在亞熱帶闊葉林透過掠食者移除實驗來檢測掠食者對植食性節肢動物(啃食性、吸食性)豐度與群聚的影響,以及對紅楠(Machilus thunbergii)葉片(葉面積受損比例、葉變異發生機率)的影響。掠食者移除處理分為四組,包括控制組、脊椎動物掠食者移除組(以圍網移除鳥與蝙蝠)、節肢動物掠食者移除組(手動移除蜘蛛)、脊椎動物掠食者與節肢動物掠食者都移除組(鳥、蝙蝠、蜘蛛皆移除)。結果顯示,當鳥、蝙蝠與蜘蛛都被移除時,食葉性節肢動物的豐度上升且紅楠葉面積受損比例增加;同時,任一掠食者的存在即可抑制植食性節肢動物之數量,並減少紅楠的葉片受損,且掠食者並不影響植食性節肢動物的群聚組成,據此可推測脊椎動物掠食者與節肢動物掠食者在獵物物種上有高度重疊。此外,食葉動物數量與葉片受損量之間不具相關性,這可能是因為造成嚴重葉受損的是少數幾個物種(如楠六點天蛾Marumba cristata bukaiana)。鳥與蝙蝠移除組較控制組有更高的蜘蛛豐度,顯示脊椎動物掠食者會捕食節肢動物掠食者並導致其數量下降(同功群內捕食),但這個現象並未削弱掠食者群聚之跨營養階效應。本研究證實掠食者群聚對植物產生正向的跨營養階效應,且脊椎動物與節肢動物所提供的掠食功能具冗餘現象(functional redundancy),導致掠食功能不隨掠食者多樣性發生變化。
Predators can affect plants through preying on herbivores (i.e. indirect trophic effect), but the direction and strength of such effects may vary depending on prey partitioning and intraguild predation among different predators. Therefore, it is important to consider species interactions while evaluating indirect trophic effects of predator community. In this study, I experimentally excluded different predators at a subtropical broad-leaf forest to examine their effects on the abundance and community composition of herbivorous arthropods (folivores, sap-suckers), as well as on the leave damage (proportion leaf area chewed, occurrence of leaf discoloration) of the Japanese bay tree (Machilus thunbergia). Predator removal included four treatments: control, vertebrate predators exclusion (birds and bats removed by netting), arthropod predators exclusion (spiders manually removed), and both predators exclusion (birds, bats and spiders all removed). The results showed that when birds, bats and spiders were all excluded, the folivores increased in abundance and M. thunbergia had a greater proportion leaf area chewed. At the same time, vertebrate predators or arthropod predators alone could suppress herbivore abundance and leaf damage, and neither influenced herbivore community compositions, suggesting extensive prey overlaps between vertebrate predators and arthropod predators. Interestingly, the folivore abundance was not correlated with proportion leaf area chewed, suggesting that a few species (e.g. Marumba cristata bukaiana) might be causing most of the leaf damage. The exclusion of birds and bats led to an increase in spider abundance, indicating intraguild predation where vertebrate predators were preying on arthropod predators. However, this intraguild predation did not dampen the trophic effects of the predator community. This study demonstrated that the predator community had positive indirect effects on the trees, in which vertebrate predators and arthropod predators exhibited functional redundancy, decoupling predatory function and predator diversity.
卓逸民、曾伶、莊智元、鄭任鈞。2005。陽明山國家公園不同地區蜘蛛多樣性之比較。國家公園學報 15:1-20。
陳俊宏、李玲玲、吳書平、蘇夢淮、李建堂、溫在弘、黃誌川、賴進貴等。2012。陽明山國家公園自然生態環境及其土地利用之研究(百拉卡公路以南,陽金公路以西區)。陽明山國家公園管理處委託研究報告。
袁孝維、李佩珍、胡哲明、蔡育倫。2022。陽明山國家公園資源調查II-陽金公路以西地區。陽明山國家公園管理處委託研究報告。
Ahmim, M., and A. Moali. 2013. The diet of four species of horseshoe bat (Chiroptera: Rhinolophidae) in a mountainous region of Algeria: evidence for gleaning. Hystrix, the Italian Journal of Mammalogy 24: 174–176.
Alonso, C., and C. M. Herrera. 2000. Seasonal variation in leaf characteristics and food selectionby larval noctuids on an evergreen Mediterranean shrub. Acta Oecologica 21: 257–265.
Bailey, R., N. Chang, P.-Y. Lai, T.-C. Hsu. 2010. Life Table of Cycad Scale, Aulacaspis Yasumatsui (Hemiptera: Diaspididae), Reared on Cycas in Taiwan. Journal of Asia-pacific Entomology 13: 183–187.
Browne, L. B., and D. Raubenheimer. 2003. Ontogenetic changes in the rate of ingestion and estimates of food consumption in fourth and fifth instar Helicoverpa armigera caterpillars. Journal of Insect Physiology 49: 3–71.
Black, R. W., and N. G. Hairston. 1988. Predator driven changes in community structure. Oecologia 77: 468–479.
Bridgeland, W. T., P. Beier, T. Kolb, and T. G. Whitham. 2010. A conditional trophic cascade: birds benefit faster growing trees with strong links between predators and plants. Ecology 91: 73–84.
Burger, J. C., M. A. Patten, J. T. Rotenberry, and R. A. Redak. 1999. Foraging ecology of the California gnatcatcher deduced from fecal samples. Oecologia 120: 304–310.
Cohen, J., S. Pimm, P. Yodzis, and J. Saldaña. 1993. Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology 62: 67–78.
Delaney, K. J., F. J. Haile, R. K. D. Peterson, and L. G. Higley. 2008. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca. Environmental Entomology 37: 1332–1343.
del Pino, M., C. Bienvendo, J. R. Boyero, and J. M. Vela. 2020. Biology, ecology and integrated pest management of the white mango scale, Aulacaspis tubercularis Newstead, a new pest in southern Spain—A review. Crop Protection 133.
Finke, D. L., and R. F. Denno. 2004. Predator diversity dampens trophic cascades. Nature 429: 407–410.
Finke, D. L., and R. F. Denno. 2005. Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecology Letters 8: 1299–1306.
Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, and C. S. Holling. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics 35: 557–581.
González-Coloma, A., P. Escoubas, J. Mizutani, and L. Lajide. 1994. Insect growth inhibitors from Machilus japonica. Phytochemistry 35: 607–610.
Gunnarsson, B. 2007. Bird predation on spiders: Ecological mechanisms and evolutionary consequences. Journal of Arachnology 35: 509–529.
Halaj, J., and D. H. Wise. 2001. Terrestrial trophic cascades: how much do they trickle? The American Naturalist 157: 262–281.
Hattori, T. 1992. Synecological study on Persea thunbergii type forest I. Geographical distribution and habitat conditions of Persea thunbergii forest. Japanese Journal of Ecology 42: 215–230.
Hogstad, O. 1984. Variation in numbers, territoriality and flock size of a Goldcrest Regulus regulus population in winter. Ibis 126: 296–306.
Hong, Y., E. Kim, E. Lee, S. Lee, K. Cho, Y. Lee, S. Chung, H. Jeong, and Y. You. 2019. Characteristics of vegetation succession on the Pinus thunbergii forests in warm temperate regions, Jeju Island, South Korea. Journal of Ecology and Environment 43: 1-16
Hooks, C. R. R., R. R. Pandey, and Johnson, M. W. 2003. Impact of avian and arthropod predation on lepidopteran caterpillar densities and plant productivity in an ephemeral agroecosystem. Ecological Entomology 28: 522–532.
Johnson, S. R., and A. K. Knapp. 1996. Impact of Ischnodemus falicus (Hemiptera: Lygaeidae) on photosynthesis and production of spartina pectinata wetlands. Environmental Entomology 25: 1122–1127.
Kalka, M. B., A. R. Smith, and E. K. V. Kalko. (2008). Bats limit arthropods and herbivory in a tropical forest. Science 320: 71–71.
Karp, D. S., and G. C. Daily. 2014. Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology 95: 1065–1074.
Kersch-Becker, M. F., B. B. Grisolia, M. J. O. Campos, and G. Q. Romero. (2018). The role of spider hunting mode on the strength of spider–plant mutualisms. Oecologia 188: 213–222.
Langellotto, G. A., & R. F. Denno. (2004). Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139: 1-10.
Lee, Y., and L. L. Lee. 2005. Food habits of japanese pipistrelles Pipistrellus abramus (Chiroptera: Vespertilionidae) in northern Taiwan. Zoological Studies 44: 95–101.
Lifjeld, J. T. 1984. Prey selection in relation to body size and bill length of five species of waders feeding in the same habitat. Ornis Scandinavica 15: 217–226.
Li, C. F., M. Chytrý, D. Zelený, M. Y. Chen, T. Y. Chen, C.-R. Chiou, Y. J. Hsia, H. Y. Liu, S. Z. Yang, C. L. Yeh, J. C. Wang, C.-F. Yu, Y. J. Lai, W. C. Chao, C. F. Hsieh. 2013. Classification of Taiwan forest vegetation. Applied Vegetation Science 16: 698–719.
Lou, Y.-G., G.-R. Zhang, W.-Q. Zhang, Y. Hu, and J. Zhang. 2013. Biological control of rice insect pests in China. Biological Control 67: 8–20.
Maas, B., Clough, Y., and Tscharntke, T. 2013. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecology Letters 16: 1480–1487.
Maas, B., D. S. Karp, S. Bumrungsri, K. Darras, D. Gonthier, J. C.-C. Huang, C. A. Lindell, J. J. Maine, L. Mestre, N. L. Michel, E. B. Morrison, I. Perfecto, S. M. Philpott, Ç. H. Şekercioğlu, R. M. Silva, P. J. Taylor, T. Tscharntke, S. A. Van Bael, C. J. Whelan, and K. Williams-Guillén. 2016. Bird and bat predation services in tropical forests and agroforestry landscapes. Biological Reviews 91: 1081–1101.
Marquis, R. J., and C. J. Whelan. 1994. Insectivorous birds increase growth of white oak through consumption of leaf-chewing insects. Ecology 75: 2007–2014.
Martin, E. A., B. Reineking, B. Seo, and I. Steffan-Dewenter. 2013. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences 110: 5534–5539.
Mäntylä, E., T. Klemola, and T. Laaksonen. 2011. Birds help plants: a meta-analysis of top-down trophic cascades caused by avian predators. Oecologia 165: 143–151.
Martini, F., I.-F. Sun, and Y.-Y. Chen. 2022. Effects of plant diversity and leaf traits on insect herbivory in plantation and natural forests. Forest Ecology and Management 509: 120085.
Maucieri, D. G., and R. M. R. Barclay. 2021. Consumption of spiders by the little brown bat (Myotis lucifugus) and the long-eared myotis (Myotis evotis) in the Rocky Mountains of Alberta, Canada. Canadian Journal of Zoology 99: 221–226.
Meyer, G. A., and T. H. Whitlow. 1992. Effects of leaf and sap feeding insects on photosynthetic rates of goldenrod. Oecologia 92: 480–489.
Mcaney, C. M., and J. S. Fairley. 1989. Analysis of the diet of the lesser horseshoe bat Rhinolophus hipposideros in the West of Ireland. Journal of Zoology 217: 491–498.
Mcnett, B. J., & A. L. Rypstra. (2000). Habitat selection in a large orb‐weaving spider: vegetational complexity determines site selection and distribution. Ecological Entomology 25: 423-432.
Midega CAO., and K. Takasu. 2018. Life history strategies of the armored scale, Aulacaspis Alisiana (Hemiptera: Coccoidea: Diaspididae) on the Japanese silver tree Neolitsea Sericea (Bl.) Koidz. (Lauraceae) in Fukuoka, Japan. Journal of Plant Science and Phytopathology: 55–58.
Mithöfer, A., and W. Boland. 2012. Plant defense against herbivores: Chemical aspects. Annual Review of Plant Biology 63: 431–450.
Naef-Daenzer, L., B. Naef-Daenzer, and R. G. Nager. 2000. Prey selection and foraging performance of breeding great tits Parus major in relation to food availability. Journal of Avian Biology 31: 206–214.
Nelson, E. H., C. E. Matthews, and J. A. Rosenheim. 2004. Predators reduce prey population growth by inducing changes in prey behavior. Ecology 85: 1853–1858.
Nentwig, W., and C. Wissel. 1986. A comparison of prey lengths among spiders. Oecologia 68: 595–600.
Pan, L. Y. 2015. Nutritional use of Daphnephila gall midges on Machilus thunbergii and organisms associated with their galls. Department of Entomology National Chung Hsing University Doctoral Thesis
Pan, L.-Y., W.-N. Chen, S.-T. Chiu, A. Raman, T.-C. Chiang, and M.-M. Yang. 2015. Is a gall an extended phenotype of the inducing insect? A comparative study of selected morphological and physiological traits of leaf and stem galls on Machilus thunbergii (Lauraceae) induced by five species of Daphnephila (Diptera: Cecidomyiidae) in Northeastern Taiwan. Zoological Science 32: 314–321.
Pavey, C. R., C. J. Burwell, J.-E. Grunwald, C. J. Marshall, and G. Neuweiler. 2001. Dietary benefits of twilight foraging by the insectivorous bat Hipposideros speoris. Biotropica 33: 670–681.
Picanço, M. C., I. R. de Oliveira, J. F. Rosado, F. M. da Silva, P. C. da Gontijo, and R. S. da Silva. 2010. Natural biological control of Ascia monuste by the social wasp Polybia ignobilis (Hymenoptera: Vespidae). Sociobiology 56: 67–76.
Poelman, E. H., A. M. O. Oduor, C. Broekgaarden, C. A. Hordijk, J. J. Jansen, J. J. A. Van Loon, N. M. Van Dam, L. E. M. Vet, and M. Dicke. 2009. Field parasitism rates of caterpillars on Brassica oleracea plants are reliably predicted by differential attraction of Cotesia parasitoids. Functional Ecology 23: 951–962.
Polis, G. A., A. L. W. Sears, G. R. Huxel, D. R. Strong, and J. Maron. 2000. When is a trophic cascade a trophic cascade? Trends in Ecology and Evolution 15: 473–475.
Purcell, A. H. 1982. Insect vector relationships with procaryotic plant pathogens. Annual Review of Phytopathology 20: 397–417.
Riginos, C., and J. B. Grace. 2008. Savanna tree density, herbivores, and the herbaceous community: bottom-up vs. top-down effects. Ecology 89: 2228–2238.
Ripple, W. J., and R. L. Beschta. 2003. Wolf reintroduction, predation risk, and cottonwood recovery in Yellowstone National Park. Forest Ecology and Management 184: 299-313
Ripple, W. J., and R. L. Beschta, 2006. Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biological Conservation 133: 397–408.
Roslin, T., B. Hardwick, V. Novotny, W. K. Petry, N. R. Andrew, A. Asmus, I. C. Barrio, Y. Basset, A. L. Boesing, T. C. Bonebrake, E. K. Cameron, W. Dáttilo, D. A. Donoso, P. Drozd, C. L. Gray, D. S. Hik, S. J. Hill, T. Hopkins, S. Huang, … E. M. Slade. 2017. Higher predation risk for insect prey at low latitudes and elevations. Science, 356: 742–744.
Rossi, L. C., E. Berenguer, A. C. Lees, J. Barlow, J. Ferreira, F. M. França, P. Tavares, and M. A. Pizo. 2022. Predation on artificial caterpillars following understory fires in human-modified Amazonian forests. Biotropica 54: 754–763.
Royauté, R., and J. N. Pruitt. 2015. Varying predator personalities generates contrasting prey communities in an agroecosystem. Ecology 96: 2902–2911.
Schmitz, O. J., P. A. Hambäck, and A. P. Beckerman. 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. The American Naturalist 155: 141-153.
Schulz, M. 2000. Diet and foraging behavior of the golden-tipped bat, Kerivoula papuensis: a spider specialist? Journal of Mammalogy 81: 948–957.
Schuldt, A., M. Baruffol, M. Böhnke, H. Bruelheide, W. Härdtle, A. C. Lang, K. Nadrowski, G. von Oheimb, W. Voigt, H. Zhou, T. Assmann, and J. Fridley, 2010. Tree diversity promotes insect herbivory in subtropical forests of south-east China. The Journal of Ecology 98: 917–926.
Singer, M. S., R. E. Clark, I. H. Lichter-Marck, E. R. Johnson, and K. A. Mooney. 2017. Predatory birds and ants partition caterpillar prey by body size and diet breadth. Journal of Animal Ecology 86: 1363–1371.
Strauss, S. Y. 1991. Indirect effects in community ecology: their definition, study and importance. Trends in Ecology and Evolution 6: 206–210.
Tambling, C. J., L. Minnie, J. Meyer, E. W. Freeman, R. M. Santymire, J. Adendorff, and G. I. H. Kerley. 2015. Temporal shifts in activity of prey following large predator reintroductions. Behavioral Ecology and Sociobiology 69: 1153–1161.
Van Bael, S. A., J. D. Brawn, and S. K. Robinson. 2003. Birds defend trees from herbivores in a Neotropical forest canopy. Proceedings of the National Academy of Sciences 100: 8304–8307.
Van Bael, S. A., and J. D. Brawn. 2005. The direct and indirect effects of insectivory by birds in two contrasting Neotropical forests. Oecologia 145: 658–668.
Vance-Chalcraft, H. D., J. A. Rosenheim, J. R. Vonesh, C. W. Osenberg, and A. Sih. 2007. The influence of intraguild predation on prey suppression and prey release: A meta-analysis. Ecology 88: 2689–2696.
Vézina, A. F. 1985. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67: 555–565.
Wang, Z., Y. Liu, M. Shi, J. Huang, and X. Chen. 2019. Parasitoid wasps as effective biological control agents. Journal of Integrative Agriculture 18: 705–715.
Wilmers, C. C., J. A. Estes, M. Edwards, K. L. Laidre, and B. Konar. 2012. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Frontiers in Ecology and the Environment 10: 409–415.
Wilmers, C. C., and O. J. Schmitz. 2016. Effects of gray wolf-induced trophic cascades on ecosystem carbon cycling. Ecosphere 7: e01501.
Williams-Guillén, K., I. Perfecto, and J. Vandermeer. 2008. Bats limit insects in a Neotropical agroforestry system. Science 320: 70–70.
Wootton, J. T. 1994. The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics 25: 443–466.
Wootton, K. L., and D. B. Stouffer. 2016. Many weak interactions and few strong; food-web feasibility depends on the combination of the strength of species’ interactions and their correct arrangement. Theoretical Ecology 9: 185–195.
Wu, P. C., and P. J. L. Shaner. 2016. Trophic cascade effects of avian predation on a willow in an urban wetland. Oecologia 180: 293-303.
Wu, Z. Y., P. H. Raven, and D.Y. Hong. 2008. Flora of China, Vol. 7 (Menispermaceae through Capparaceae). Beijing and St. Louis: Science Press and Missouri Botanical Garden Press
Zangerl, A. R., J. G. Hamilton, T. J. Miller, A. R. Crofts, K. Oxborough, M. Berenbaum, and E. H. De Lucia. 2002. Impact of folivory on photosynthesis is greater than the sum of its holes. Proceedings of the National Academy of Sciences 99: 1088–1091.
Zvereva, E. L., V. Lanta, and M. V. Kozlov. 2010. Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia, 163: 949–960.