研究生: |
林耿任 Lin, Geng-Ren |
---|---|
論文名稱: |
數學新手與資深教師對學生學習困難的預測與教學策略之比對與分析:以一元一次方程式為例 A comparison between a novice and an expert mathematics teachers on their prediction of students’ learning diffculties and their subsequent teaching stratigies-Using first degree equation in one variable as an example |
指導教授: |
譚克平
Tam, Hak-Ping |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 200 |
中文關鍵詞: | 新手教師 、資深教師 、一元一次方程式 、學生學習困難預測 、教學策略 |
英文關鍵詞: | Novice teacher, Expert teacher, First degree equation in one variable, The prediction of students’ learning diffculties, Teaching strategies |
DOI URL: | https://doi.org/10.6345/NTNU202204010 |
論文種類: | 學術論文 |
相關次數: | 點閱:163 下載:47 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為質性研究,針對新北市某偏鄉國中的新手與資深教師,七年級上學期「第三單元、一元一次方程式」的課程教學中,進行長期的課堂觀察記錄。欲探討新手與資深教師在針對學生學習困難上的預測,以及教學策略使用上的差異為何;同時,也進行該校學生學習困難的蒐集與整理。
兩位受測教師在知曉研究目的之狀況下進行教學,本研究的流程會先讓教師進行課前預測,再進行課堂的觀察與記錄,課程結束後的一兩天內再進行學生學習狀況測驗,並彙整告知受測教師,並繼續再後續課程觀察教師的因應教學策略會作何改變。
研究針對兩位教師在課前的預測進行統整與比對,並與後續學生學習困難整理對照,試圖描繪教師們容易忽略的細節;以及利用觀課筆記與教學影帶編碼分析,比較兩位教師在教學策略使用上的差異。
本研究的新手與資深教師在學生學習困難的預測上,僅有些微的差異,在與學生實際課後反應的學習困難對照,發現兩位受試教師皆有小部分的誤差,但也各有預測準確的部分。在教學策略上,新手教師使用的方式較為開放,多數的課堂時間皆以問答互動的方式進行,並時常利用一般化的例子或類比的方式進行引導,再類推至代數符號上;資深教師則以課本課程脈絡作為教學的主軸,並不時的針對其預測的學生學習困難處進行舉例、澄清,在課程進入中後段則採用大量的學生練習與上台演示來進行教學,如此一來可藉由學生於黑板上的反應,再針對其問題進行講解。而學生的學習困難部分,許多誠如多數文獻所提及;與兩位教師的預測進行比對後,建議教師須針對代數相關的重要專有名詞說明清楚,以及容易混淆的相關概念進行澄清,例如:化簡、列式、式子與方程式等,以及強化學生對等號意義上的認知。
This research focuse on teachers’ prediction and subsequent teaching strategies-using first degree equation in one variable as an example. The researcher spend about 4 months to follow a novice and an expert mathematics teacher, who predict their students’ learning diffculties before they start teaching to record their subsequent teaching stratieies by field notes or vedio records. We want to know the difference of predictions and subsequent teaching strategies between a novice and an expert mathematics teacher. And we also want to know what are the learning diffculties that students have at the end of the teaching session. After that the data about the problems students have are collected immediately to let the teacher know, and the changes of their subsequent teaching strategies are also recorded at their surplus classes
This research indicates that a slight difference in prediction between novice and expert teacher. Comparing with students’ real learning diffculties, the prediction show the relative accuracy with some errors. Nevertheless, the diffience of subsequent teaching strategies are more worthy of our attention. The novice teacher tends to use the stratigy of questioning students at class, such as giving students general examples or using analogy for the mathematics conception to guide her students thinking and learning. The expert teacher’s subsequent teaching strategies are on the basis of the textbook, but he usually give the example or clarify some concepts at the point where he predicts the students may have learning diffcultes. Sometimes, he will give students times to practice some exercises by themselves, and ask some students to write down their calculation process on the board. As a result, he can explain for the problem.
In addition, there is a difference between the teachers’ predictions and students’ real learning difficulties. Therefore, based on this discrepancies, it is advisable that teachers plainly explain and simplify mathematics concepts and terms, such as “Simplification”. Confusing concepts, such as formula and equation, should be illustrated clearly. Furthermore, the notion of equal mark should be strengthened, which may benefit students when learning algebra.
一、英文部分
Ball, D. L. (1989). Teaching mathematics for understanding: What do teachers need to know about the subject matter? National Center for Research in Teacher Education.
Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. Multiple perspectives on the teaching and learning of mathematics, 83-104.
Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14-17, 20-22, 43-46.
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching what makes it special?. Journal of Teacher Education, 59(5), 389-407.
Behr, M. Erlwanger, S., & Nichols, E. (1976). How children view equality sentences (PMDS Technical Report No.3). Tallahassee: Florida State University. (ERIC Document Reproduction Service No.ED144 802)
Bents, M. L. (1989). Perspectives of good teaching among novice, advanced beginner and expert teachers.
Berliner, D. C. (1986). In pursuit of the expert pedagogue. Educational Researcher, 15(7), 5-13.
Berliner, D. C. (1987). Ways of thinking about students and classrooms by more and less experienced teachers. Exploring teachers' thinking, 60-83.
Bernard, H. R. (2006). Research methods in anthropology: Qualitative and quantitative approaches (5th ed.). Lanham, MD: Altamira Press.
Booth, L. R. (1988). Children's difficulties in beginning algebra. In A. F. Coxford & A. P. Shulte (Eds.), The ideas of algebra, K-12: (1988 Yearbook, pp. 20-32). Reston, VA: National Council of Teachers of Mathematics.
Carter, K., Cushing, K., Sabers, D., Stein, P., & Berliner, D. (1988). Expert-novice differences in perceiving and processing visual classroom information.Journal of teacher education, 39(3), 25-31.
Dane, F. C. (1990). Research methods. Pacific Grove, CA: Brooks/Cole.
Elbaz, F. (1983). Teacher thinking: A study of practical knowledge. London: Croom Helm.
Filloy, E. & Rojano, T. (1984). Form an arithmetical to an algebra thought. In J. M0 Moser (Ed.), Proceedings of the sixth annual meeting of PME-NA (pp. 51-56). Madison: University of Wisconsin.
Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago, IL: Aldine.
Ilany, B. S., & Shmueli, N. (1998). " Automatism" in finding a" solution" among junior high school students. DOCUMENT RESUME, 63.
Kieran, C. (1989). The early learning of algebra: A structural perspective. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 33-56). Reston, VA: National Council of Teachers of Mathematics.
Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390-419). New York: Macmillan Publishing Company.
Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716-725.
LeCompte, M. D., Preissle, J., & Tesch, R. (1993). Ethnography and qualitative research. Newbury Park, CA: Sage.
Leinhardt, G. (1989). Math lessons: A contrast of novice and expert competence. Journal for Research in Mathematics Education, 20(1), 52-75.
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.
Mayer, R. E. (1992). Thinking, problem solving, cognition (2nd ed.). New York, NY: WH Freeman/Times Books/Henry Holt & Co.
Merriam, S. B. (1998). Qualitative research and case study applications in education: Revised and expanded from case study research in education (2nd ed.). San Francisco, CA: Jossey-Bass.
Pandit, N. R. (1996). The creation of theory: A recent application of the grounded theory method. The qualitative report, 2(4), 1-15.
Park, S., & Chen, Y. C. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology classrooms. Journal of Research in Science Teaching, 49(7), 922-941.
Park, S., & Oliver, J. S. (2008). National Board Certification (NBC) as a catalyst for teachers' learning about teaching: The effects of the NBC process on candidate teachers' PCK development. Journal of Research in Science Teaching, 45(7), 812-834.
Sherin, M. G. (2002). When teaching becomes learning. Cognition and instruction, 20(2), 119-150.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard educational review, 57(1), 1-23.
Spradley, J. (1980). Participant observation. New York, NY: Holt, Rinehart, and Winston.
Swanson, H. L., O’Connor, J. E., & Cooney, J. B. (1990). An information processing analysis of expert and novice teachers’ problem solving. American Educational Research Journal, 27(3), 533-556.
Turner‐Bisset, R. (1999). The knowledge bases of the expert teacher. British educational research journal, 25(1), 39-55.
Veenman, S. (1984). Perceived problems of beginning teachers. Review of Educational Research, 54(2), 143-178.
Westerman, D. A. (1991). Expert and novice teacher decision making. Journal of Teacher Education, 42(4), 292-305.
Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Newbury Park, CA: Sage.
二、中文部分
王如敏(2004)。國二學生解一元一次方程式錯誤類型分析研究。國立高雄師範大學數學研究所碩士論文,未出版。
王志銘、康淑娟(2006)。等量公理前置教學活動之實踐與探究。臺灣數學教學 電子期刊,8,21-40。
王姿勻(2008)。國中生數學方程式文字解題困難及迷思概念之研究。國立台北科技大學技術及職業教育研究所碩士論文,未出版。
李盈賢(2007)。高雄市國二學生一元二次方程式迷失概念之研究。國立高雄師範大學數學研究所碩士論文,未出版。
周健(2012)。教學內容知識的定義和內涵。香港教師中心學報,11,145-163。
邱志賢、毛國楠(2001)。國小六年級學童解未知數文字題之另類概念分析。台東師院學報,13,23-60。
林碧珍、林曉菁(2013)。國小列式子之教學探討。2013年第五屆科技與數學教育國際學術研討會暨數學教育工作坊論文集(pp. 89-99)(Proceeding of 2013 The fifth International Conference on Technology and Mathematics Education and Workshop of Mathematics Teaching)。6月8~9日。國立台中教育大學數學系。
洪有情(2003)。青少年的代數運算概念發展研究。行政院國家科學委員會專題研究計劃成果報告(NSC 91-2522-S-03-016)。台北市:國立台灣師範大學數學系。
段翠卿(2007)。淺談中學生學習數學困難成因及其對策。科學大眾(科學教育研究),8,130-130。
徐宗國(譯)(1997),A. Strauss和J. Corbin(著):質性研究概論(Basics of qualitative research: Grounded theory, procedures, and techniques)。臺北:巨流。(原著出版於1990年)
徐偉民、林潔慧(2010)。利用教學模組進行國小四年級四則運算兩步驟文字題補救教學之行動研究。 屏東教育大學學報,34,211-242。
孫志麟(1992)。生手如何才能成為專家呢?──教師專業表現之探討。師友月刊,3月,21-25。
孫志麟(1992)。專家教師與生手教師的差異。師友月刊,4月,21-23。
許秀如(2007)。國中生文字符號概念的發展。國立彰化師範大學科學教育研究所碩士論文,未出版。
張民杰(2015)。班級經營:學說與案例應用(三版)。臺北市:高等教育。
張俊紳(2000)。國民小學數學科專家及新手教師教學行為分析研究。台東師院學報,11,53-90。
張景媛(1994)。國中生數學學習歷程統整模式的驗證及應用:學生建構數學概念的分析及數學文字題教學策略的研究。國立臺灣師範大學教育心理與輔導研究所博士論文,未出版。
張景媛(1995)。數學文字題錯誤概念分析及學生建構數學概念的研究。教育心理學報,27,175-200。
張景媛(1996)。如何讓新手成為專家教師。教育測驗與輔導,146,3008-3010。
郭汾派、林光賢、林福來(1989)。國中生文字符號概念的發展。國科會專題研究計畫報告(NSC 76-0111-S003-08)。
陳彥廷(2015)。國小教師數學教學知識之個案研究。科學教育學刊,23(3), 213-239。
陳姿靜、梁文鎮、林碧珍(2011)。利用未知符號列出算式而非列出等式。林碧珍主編,數學教學案例:代數篇。台北市:師大書院。
陳昺麟(2001)。社會科學質化研究之紮根理論實施程序及實例之介紹。取自http://myweb.nutn.edu.tw/~hycheng/8Humeco/groundedtheory02.pdf
陳哲仁(2004)。九年一貫國二學生解一元二次方程式應用問題歷程之分析研究。國立高雄師範大學數學研究所碩士論文,未出版。
陳義汶(2008)。影響國中數學專家教師教學發展之個案研究。臺南科大學報 (人文管理),27,209-233。
粘富閔(2015)。生物課堂教學樣貌的詮釋性研究-以TIMSS-R錄影研究中的五國生物課堂為例。國立臺灣師範大學科學教育研究所碩士論文,未出版。
曾映程(2007)。台南地區國一學生解一元一次方程式迷思概念分析研究。國立高雄師範大學數學研究所碩士論文,未出版。
黃淑華、鄭鈐華、王又禾、吳昭容(2014)。一元一次方程式應用問題的補救教學。台灣數學教師電子期刊,35(1),1-16。
蔡坤憲(譯)(2006),G. Polya(著):怎樣解題(How to solve it: A new aspect of mathematical)。台北:天下文化。
廖學專(2002)。初探國中生等號概念之心像。國立臺灣師範大學數學研究所碩士論文,未出版。
戴文賓(1999)。國一學生由算術領域轉入代數領域呈現的學習現象與特徵。國立彰化師範大學數學研究所碩士論文,未出版。
謝和秀(2001)。國一學生文字符號概念及代數文字題之解題研究。國立高雄師範大學數學教育研究所碩士論文,未出版。
謝佳叡(2003)。從算術思維過渡到代數思維。九年一貫課程綱要諮詢小組諮詢。