簡易檢索 / 詳目顯示

研究生: 楊智傑
Yang, Chih-Chieh
論文名稱: 在大氣環境下帶電摩擦介面中單層石墨烯和單層六方氮化硼之吸附特性
The Adhesive Properties of Single-Layer Graphene and Single-Layer Hexagonal-Boron Nitride in Sliding Electrical Contact Interface under Ambient Conditions
指導教授: 邱顯智
Chiu, Hsiang-Chih
口試委員: 邱顯智
Chiu, Hsiang-Chih
駱芳鈺
Lo, Fang-Yu
莊程豪
Chuang, Cheng-Hao
口試日期: 2024/06/25
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 47
中文關鍵詞: 單層石墨烯單層六方氮化硼原子力顯微鏡滑動摩擦起電含氧官能基表面吸附力
英文關鍵詞: Single-layer graphene, Single-layer hexagonal boron nitride, Atomic force microscopy, Sliding frictional electrification, Oxygen-containing functional groups, Adhesion
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401636
論文種類: 學術論文
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用原子力顯微鏡(Atomic Force Microscopy, AFM)研究了二氧化矽基板上的單層石墨烯(Single Layer Graphene, SLG)和單層六方氮化硼(Hexagonal Boron Nitride, h-BN)在滑動摩擦起電區域下的吸附性質對濕度的變化。首先,我們使用導電式原子力顯微鏡(Conductive Atomic Force Microscopy, c-AFM),在大氣環境下通過帶有偏壓的探針摩擦SLG和h-BN表面,以建立滑動摩擦起電。我們改變五種不同的環境濕度來量測矽探針與摩擦區域間的吸附特性。我們的實驗結果顯示,在SLG表面使用正偏壓進行帶電摩擦後,由於摩擦過程中產生的結構缺陷,將使摩擦過的SLG表面與未摩擦之前相比產生較大的吸附力。然而,當使用負偏壓進行帶電摩擦時,摩擦過的SLG表面的吸附力會顯著高於使用零伏特和正偏壓摩擦後的表面。這是因為當我們施加負電壓進行帶電摩擦時,探針與探針表面間的奈米水橋將會被電解,產生的氫氧根將使得石墨烯表面被氧化並形成大量含氧官能團。這些含氧官能團將會吸收大氣中的水分子,使得矽探針與摩擦區域之間更容易產生毛細水橋並導致更大的吸附力。另一方面,當我們對h-BN表面施加負偏壓摩擦時,與正偏壓和零伏特摩擦後的表面相比,摩擦區域的吸附力沒有顯著差異,這表明h-BN表面沒有像SLG表面那樣發生官能基化的現象。我們的研究結果可能有助於將SLG和h-BN應用於具有帶電摩擦介面的奈米機電元件中。

    In this study, we investigated the adhesive properties of single-layer graphene (SLG) and single-layer hexagonal boron nitride (h-BN) on silicon dioxide substrates under sliding electrical contact using atomic force microscopy (AFM). First, we used conductive atomic force microscopy (c-AFM) to slide an electrically-biased c-AFM probe on the surfaces of SLG and h-BN, creating sliding electrical contact. We measured the adhesive properties of the rubbed areas on SLG and h-BN using a silicon AFM probe under various environmental humidity. Our results showed that after rubbing the SLG surface with a positive bias, the adhesive forces measured on the rubbed area were slightly higher than those on the untreated surface, due to the structural defects generated during the sliding process. However, when a negative bias was used during rubbing, the adhesive forces on the SLG surface were significantly higher than the forces measured on SLG treated with zero volts or positive bias. This increase in adhesive forces is attributed to the electrolytic reaction of the nano meniscus between the probe and the surface when a negative bias was used, generating hydroxyl (OH-) that will oxidize the SLG surface , leading to the formation of numerous oxygen-containing functional groups on the SLG surface. These oxygen-containing functional groups will easily absorb ambient water molecules that resulting in larger water menisci between the silicon AFM probe and the rubbed SLG surface, giving rise to larger adhesive forces. On the other hand, when a negative bias was applied to rub the h-BN surface, the adhesive force in the rubbed area showed no significant differences compared to the surfaces treated with positive bias and zero volts, indicating that no functionalization occurred on the h-BN surface as it did on the SLG surface. Our findings may aid in the application of SLG and h-BN in nano-devices that require sliding electrical contacts.

    摘要 i Abstract ii 目錄 iv 圖目錄 vi 表目錄 viii 第1章 序論 1 第2章 原子力顯微鏡簡介 3 2-1 原子力顯微鏡的歷史 3 2-2 原子力顯微鏡的架構 4 2-3 原子力顯微鏡-基本模式介紹 5 2-3-1 接觸式模式(Contact mode) 5 2-3-2 非接觸式模式(Non-contact mode) 5 2-3-3 輕敲式模式(Tapping mode) 6 2-3-4峰值力輕敲模式(Peakforce tapping mode) 6 2-4 力與距離圖(Force-distance curve) 8 2-5單點量測(Ramp) 9 2-6 力曲線三維成像模式(Force-volume) 9 2-7 探針彈性係數校正(Spring constant) 10 第3章、實驗方法和樣品製備 12 3-1石墨烯和六方氮化硼的製備方法 12 3-1-1 機械剝離法 (Mechanical Exfoliation) 12 3-1-2 化學氣相沉積法 (Chemical Vapor Deposition) 13 3-2 石墨烯和六方氮化硼的轉置方法:氣泡剝離法(Bubble-assisted method) 14 3-3 滑動摩擦起電 15 3-4 相對濕度自動控制系統 16 3-5 吸附力性質量測 17 3-6 拉曼光譜性質量測 17 3-7 紅外光譜性質測量 19 第4章 實驗結果與討論 22 4-1 SLG/二氧化矽基板表面形貌 22 4-2單層石墨烯的拉曼光譜分析 23 4-3 -10V磨擦後的SLG紅外線光譜分析 24 4-4經-10V和+10V與0V摩擦後石墨烯的力與距離圖分析 25 4-5石墨烯摩擦區域的表面吸附力對濕度的變化 28 4-6單層六方氮化硼/二氧化矽基板表面形貌 31 4-7單層六方氮化硼的拉曼光譜 32 4-8經-10V和+10V與0V摩擦後六方氮化硼的力與距離圖分析 33 4-9 單層六方氮化硼摩擦區域的表面吸附力對濕度的變化 36 4-10單層六方氮化硼和單層石墨烯之吸附力比較 38 第5章 結論 39 參考文獻 40

    1. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388. DOI: 10.1126/science.1157996
    2. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. DOI: 10.1126/science.1102896
    3. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. DOI: 10.1038/nature04969
    4. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. DOI: 10.1038/nmat1849
    5. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308. DOI: 10.1126/science.1156965
    6. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., & Kim, P. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9-10), 351-355. DOI: 10.1016/j.ssc.2008.02.024
    7. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907. DOI: 10.1021/nl0731872
    8. Geim, A. K., & Novoselov, K. S. (2007). Graphene: A Rising Star on the Horizon of Materials Science and Technology. Nature Materials, 6, 183-191.
    9. Zhan, G., Yu, Q., & Drzal, M. D. (2011). Graphene-based protective coatings. Journal of Materials Science, 46, 5718-5724.
    10. Koenig, S. P., Wang, L., Pellegrino, J., & Bunch, J. S. (2012). Graphene oxide as a barrier layer for protection of stainless steel. ACS Nano, 6(8), 7062-7068. DOI: 10.1021/nn5011384
    11. Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533-9557. DOI: 10.1021/nn400058z
    12. Fan, F. R., Tian, Z. Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano Energy, 1(2), 328-334. DOI: 10.1016/j.nanoen.2012.01.004
    13. Niu, S., & Wang, Z. L. (2015). Theoretical systems of triboelectric nanogenerators. Nano Energy, 14, 161-192. DOI: 10.1016/j.nanoen.2014.11.034
    14. Zhang, H., Yang, Y., & Wang, Z. L. (2012). Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 1(3), 337-344. DOI: 10.1016/j.nanoen.2012.01.002
    15. Li, S., Nie, J., Shi, Y., Tian, J., Deng, H., Chen, X., & Wang, Z. L. (2019). New developments of TiO2 in triboelectric nanogenerators. Nano Energy, 66, 104175. DOI: 10.1016/j.nanoen.2019.104175
    16. Lee, S., & Hinoki, T. (2015). Triboelectric nanogenerators based on two-dimensional materials. Advanced Materials, 27(6), 1073-1080. DOI: 10.1002/adma.201404791
    17. Zhao, X., Zhang, Y., Deng, W., Xu, C., Wang, P., & Wang, Z. L. (2019). Polyimide/hexagonal boron nitride composite film-based triboelectric nanogenerator for thermal charging. Nano Energy, 65, 103973. DOI: 10.1016/j.nanoen.2019.103973
    18. Bhushan, B. (2017). Nanotribology and nanomechanics: An introduction. Springer International Publishing.
    19. Zhao, Z. F., Feng, Y., Ma, L., Li, T., Yang, B., Zhou, F., & Liu, W. (2016). Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano, 10(2), 1780-1787. DOI: 10.1021/acsnano.5b07641
    20. An, L., Yang, Z., Zeng, X., Hu, W., Yu, Y., Zhang, J., & Liu, Y. (2022). Flexible and quasi-isotropically thermoconductive polyimide films by guided assembly of boron nitride nanoplate/boron nitride flakes for microelectronic application. Chemical Engineering Journal, 431, 133740. DOI: 10.1016/j.cej.2021.133740
    21. An, L., Gu, R., Zhong, B., Wang, J., Zhang, J., & Yu, Y. (2021). Quasi-Isotropically thermal conductive, highly transparent, insulating and super-flexible polymer films achieved by cross linked 2D hexagonal boron nitride nanosheets. Small, 17, 2101409. DOI: 10.1002/smll.202101409
    22. Kao, F. C., Ho, H. H., Chiu, P. Y., Hsieh, M. K., Liao, J. C., Lai, P. L., Huang, Y. F., Dong, M. Y., Tsai, T. T., & Lin, Z. H. (2022). Self-assisted wound healing using piezoelectric and triboelectric nanogenerators. Science and Technology of Advanced Materials, 23(1), 1-16. DOI: 10.1080/14686996.2022.2076161
    23. Kim, S., Kim, D., Kang, D., Lim, D., Kim, Y. K., & Choi, H. (2017). Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics. Nature Communications, 8, 15891. DOI: 10.1038/ncomms15891
    24. Fan, F. R., Tian, Z. Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano Energy, 1(2), 328-334. DOI: 10.1016/j.nanoen.2012.01.004
    25. Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters, 49(1), 57-61. DOI: 10.1103/PhysRevLett.49.57
    26. Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic Force Microscope. Physical Review Letters, 56(9), 930-933. DOI: 10.1103/PhysRevLett.56.930
    27. Cleveland, J. P., Manne, S., Bocek, D., & Hansma, P. K. (1993). A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments, 64(2), 403-405. DOI: 10.1063/1.1144209
    28. Burnham, N. A., Chen, X., Hodges, C. S., Matei, G. A., Thoreson, E. J., Roberts, C. J., & Davies, M. C. (2003). Comparison of calibration methods for atomic‐force microscopy cantilevers. Nanotechnology, 14(1), 1-6. DOI: 10.1088/0957-4484/14/1/301
    29. Ling, X., Fang, W., Lee, Y. H., Araujo, P. T., Zhang, X., Rodriguez-Nieva, J. F., Lin, Y., Zhang, J., Kong, J., & Dresselhaus, M. S. (2014). Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Letters, 14(6), 3033-3040. DOI: 10.1021/nl404610c
    30. Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 3, 11700-11715. DOI: 10.1039/C5TA00252D
    31. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. DOI: 10.1126/science.1102896
    32. Huang, W. Y., Hsieh, C. L., Chien, Y. L., Kao, C. S., Tsai, H. S., & Woon, W. Y. (2022). Growth Mechanism of High-Quality hBN Monolayers on Cu through Chemical Vapor Deposition with Inductively Coupled Plasma. The Journal of Physical Chemistry C, 126(50), 21287-21296. DOI: 10.1021/acs.jpcc.2c05977
    33. Boscá, A., Pedrós, J., Martínez, J., & Calle, F. (2016). Automatic graphene transfer system for improved material quality and efficiency. Scientific Reports, 6, 21676. DOI: 10.1038/srep21676
    34. Kim, K., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710. DOI: 10.1038/nature07719
    35. Lin, Y. C., Lu, C. C., Yeh, C. H., Jin, C., Suenaga, K., & Chiu, P. W. (2012). Graphene Annealing: How Clean Can It Be? Nano Letters, 12(1), 414-419. DOI: 10.1021/nl203733r
    36. Leong, W. S., Wang, H., & Thong, J. T. (2019). Paraffin-enabled graphene transfer. Nature Communications, 10, 867. DOI: 10.1038/s41467-019-08813-x
    37. Saeed, M., Alshammari, Y., Majeed, S. A., & Al-Nasrallah, E. (2020). Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules, 25(17), 3856. DOI: 10.3390/molecules25173856
    38. Liu, Y., Li, H., Xu, J., & Wang, X. (2020). Adhesive force measurement of steady-state water nano-meniscus. Scientific Reports, 10(1), 12345. DOI: 10.1038/s41598-020-12345-6
    39. Kim, J., & Jang, J. (2019). Material-related contact time dependence of adhesion. Tribology International, 133, 110-115. DOI: 10.1016/j.triboint.2019.01.012
    40. Byun, I. S., Kim, W., Boukhvalov, D., Park, J., Son, Y. W., Cha, Y. H., & Ahn, J. R. (2014). Electrical control of nanoscale functionalization in graphene by the scanning probe technique. NPG Asia Materials, 6, e102. DOI: 10.1038/am.2014.24
    41. Li, L. H., & Chen, Y. (2016). Atomically Thin Boron Nitride: Unique Properties and Applications. Advanced Functional Materials, 26(16), 2594-2608. DOI: 10.1002/adfm.201504606
    42. Lucchese, M. M., Stavale, F., Martins Ferreira, E. H., Vilani, C., Moutinho, M. V., Capaz, R. B., Achete, C. A., & Jorio, A. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48(5), 1592-1597. DOI: 10.1016/j.carbon.2009.12.057
    43. Ni, Z., Wang, Y., Yu, T., You, Y., & Shen, Z. (2008). Raman spectroscopy and imaging of graphene. Nano Research, 1(4), 273-291. DOI: 10.1007/s12274-008-8036-1
    44. Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5-6), 51-87. DOI: 10.1016/j.physrep.2009.02.003
    45. Wade, L. G. (2003). Organic Chemistry (5th ed.). Pearson Education Inc.
    46. Larkin, P. (2011). Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier.
    47. Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons.
    48. Bhuyan, M. S. A., Uddin, M. N., Islam, M. M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. International Nano Letters, 6(2), 65-83. DOI: 10.1007/s40089-015-0176-1
    49. Bartošík, M., Kormoš, L., Flajšman, L., Kalousek, R., Mach, J., Lišková, Z., Nezval, D., Švarc, V., Šamořil, T., & Šikola, T. (2017). Nanometer-Sized Water Bridge and Pull-Off Force in AFM at Different Relative Humidities: Reproducibility Measurement and Model Based on Surface Tension Change. The Journal of Physical Chemistry B, 121(3), 610-619. DOI: 10.1021/acs.jpcb.6b11108
    50. Liu, Y. J., Wang, R. S., Yang, K. H., Cheng, W. Y., Huang, S. D., Chu, E. D., Hsieh, S. H., Chen, C. H., Liou, J. W., & Chiu, H. C. (2023). Effect of structural defects on the physiochemical properties of supportive single-layer graphene in a sliding electrical contact interface under ambient conditions. Applied Surface Science, 637, 157992. DOI: 10.1016/j.apsusc.2023.157992
    51. Raja, K. K., Anusuya, T., & Kumar, V. (2023). DFT study of hydrogen interaction with transition metal doped graphene for efficient hydrogen storage: effect of d-orbital occupancy and Kubas interaction. Physical Chemistry Chemical Physics. DOI: 10.1039/D2CP03794G
    52. Liao, C. D., Capasso, A., Queirós, T., Domingues, T., Cerqueira, F., Nicoara, N., Borme, J., Freitas, P., & Alpuim, P. (2022). Electrical detection of DNA hybridization on graphene using electromechanical resonators. Beilstein Journal of Nanotechnology, 13, 796-806. DOI: 10.3762/bjnano.13.70
    53. Kaniyoor, A., & Ramaprabhu, S. (2012). A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Advances, 2(3), 032183. DOI: 10.1063/1.4756995
    54. Xiao, C., Shi, P., Yan, W., Chen, L., Qian, L., & Kim, S. H. (2019). Thickness and Structure of Adsorbed Water Layer and Effects on Adhesion and Friction at Nanoasperity Contact. Colloids and Interfaces, 3(3), 55. DOI: 10.3390/colloids3030055
    55. Liebendorfer, A. (2023). Atomic force microscopy shows behavior of nanoscale water capillary bridges. Scilight, 241101. DOI: 10.1063/10.0019799
    56. Cassin, F., Hahury, R., Lançon, T., Franklin, S., & Weber, B. (2023). The nucleation, growth, and adhesion of water bridges in sliding nano-contacts. Journal of Chemical Physics, 158(22), 224703. DOI: 10.1063/5.0150276
    57. Wagner, J., Edel, R., Grabnic, T., Wiggins, B., & Sibener, S. J. (2024). On-Surface Chemical Dynamics of Monolayer, Bilayer, and Many-Layered Graphene Surfaces Probed with Supersonic Beam Scattering and STM Imaging. Faraday Discussions. DOI: 10.1039/D3FD00178D
    58. Limmer, D. T., & Willard, A. P. (2021). Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces. Nanoscale, 13(15), 6956-6968. DOI: 10.1039/D1NR00351H
    59. Salehi, M., Heidari, P., Ruhani, B., Kheradmand, A., Purcar, V., & Căprărescu, S. (2021). Theoretical and Experimental Analysis of Surface Roughness and Adhesion Forces of MEMS Surfaces Using a Novel Method for Making a Compound Sputtering Target. Coatings, 11(12), 1551. DOI: 10.3390/coatings11121551
    60. Moon, M. A., Kim, C., Kim, J. H., Lee, H. J., & Kim, K. S. (2022). Surface Properties of CVD-Grown Graphene Transferred by Wet and Dry Transfer Processes. Sensors, 22(10), 3944. DOI: 10.3390/s22103944
    61. Eckmann, A., Felten, A., Verzhbitskiy, I. A., Davey, R., & Casiraghi, C. (2013). Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Physical Review B, 88, 035426. DOI: 10.1103/PhysRevB.88.035426
    62. Lang, H., Xu, Y., Zhu, P., Peng, Y., Zou, K., Yu, K., & Huang, Y. (2021). Superior lubrication and electrical stability of graphene as highly effective solid lubricant at sliding electrical contact interface. Carbon, 183, 53-61. DOI: 10.1016/j.carbon.2021.07.025
    63. Lewis, Greenspan. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 89-96. doi: 10.6028/JRES.081A.011

    無法下載圖示 電子全文延後公開
    2025/08/25
    QR CODE