研究生: |
蔡易辰 Tsai, Yih-Chern |
---|---|
論文名稱: |
基於迴歸模型探討影響職業賽事球迷進場數之研究─以美國職棒中區為例 Regression Model Analysis on Key Factors of Professional Sport Fanbase – the Case of MLB Central Division |
指導教授: |
張國楨
Chang, Kou-Chen |
口試委員: |
李萬凱
Lee, Wan-Kai 陳俊愷 Chen, ChunKai |
口試日期: | 2021/07/17 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 職棒觀眾數 、美國職棒 、空間關係 、多元迴歸分析 |
英文關鍵詞: | professional baseball game attendance, Major League baseball, Spatial Relationships, Multiple regression analysis |
研究方法: | 次級資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202101148 |
論文種類: | 學術論文 |
相關次數: | 點閱:158 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
美國職棒發展至今已超過百年,如今已是一個具有30支球隊的商業聯盟,票房收入則是支持整個聯盟的關鍵,而觀眾數則會直接影響到整體的票房收入,因此探討影響觀眾數變化的因素對於職業球團而言即是一個重要的課題。
本研究旨在探討並找出可能影響美國職棒賽事觀眾數的因素,取2012年至2019年共8年的數據以觀眾數為中心,搭配三種類型的研究變數,分別為地理統計變數、球團相關變數以及團隊成績變數。研究中以球迷分布圖(Fanbase map)作為資料統計區,再將年度資料以每年4月1日至7月31日、8月1日至8月31日以及9月1日至10月第一周分為三個時間段,與年度資料各別進行多元迴歸分析建立出四個模型。研究除了找出有哪些因素對觀眾數具影響力外,更要比較不同時間區段所劃分出的四個模型之間影響變數會出現什麼樣的差異。
分析結果顯示,在討論觀眾數變化時,人均收入、白人人口比例、鄰近職業球隊數以及團隊薪資是重要的影響指標,其中前三者呈現顯著負相關,團隊薪資則呈現顯著正相關。此外會發現不同時間中變數的顯著性會產生變化,鄰近職業球隊數於4月1日至7月日31之間呈現不顯著,而其餘時間段皆呈現顯著負相關,表示我們在討論觀眾數的變化時,不只要考慮變數的性質,更要討論變數在時間上的差異。
本研究除了呈現影響觀眾數的變數外,更可以根據分析結果對球團經營方向和未來研究提出建議,以供球團或後續研究者一個參考依據。
MLB (Major League Baseball) has developed for hundreds of yeas, now, it is a league with more than 30 teams. Attendance revenue which depends on audience is the key of the league. Therefore, it is an important topic for the league to know what kind of factors will impact the attendance.
This research aims on the factors which impact the attendance. We use the statistics from 2012 to 2019, and discuss attendence by three types of variables, which are geography, decision from team officials and team stat. In the research, in view of the Fanbase map, we divide the annual data into three period: April 1 to July 31, June 1 to June 31 and Sep 1 to the first week of October. These three statistics are cooperated with annual data by multiple regression analysis to build four modules. This research discovers not only which factors impact the attendance, but also comparing the differences between the four modules.
According to the analysis, when it comes to attendance, per capita income, the white population rate, the numbers of professional team nearby and payrolls become an important index. The first three index are significantly negatively correlated to attendance while the payrolls are positive correlation. In addition, we find out variable varies in different period. For example, the numbers of professional team nearby do not show any obvious impact on the attendance from April 1 to July 31. However, it shows significant negative correlation in other periods. This means when we discuss about the change of attendance, we have to consider not only variable itself, but also the period affect variable.
This research not only points out how variable affects the attendance, but also provides suggestion to the future development of team officials. We hope this research can be a powerful tool to team officials and follow-up investigators.
參考文獻
中文文獻
一、專書
吳明隆、張毓仁(2011),《SPSS(PASW)與統計應用分析I》。台北:五南圖書。
二、期刊論文
白宗易、陳明宏(2010),〈職棒球迷看球意願因素與主場行銷策略之關係〉,《運動健康休閒學報》。1:12-25。
郭文田、邱榮振(2008),〈高雄火災發生潛勢分析〉,《建築學報》。63:47-72。
莊忠柱、陳天賜、姚為守(2004),〈職業棒球主場觀眾人數的影響因素之探討─以中華職棒聯盟為例〉,《體育學報》。37:163-175。
雷文谷、吳靜怡(2010),〈美國職棒大聯盟球隊薪資與球隊戰績之先關研究〉,《嘉大體育健康休閒期刊》。9(2):14-25。
葉公鼎(2001),〈論運動產業之範疇與分類〉,《運動管理》。1:8-21。
劉振家、黃德舜、陳育成(2010),〈職業運動賽事之觀眾人數及其影響因素分析─美國、日本、韓國、台灣之職業棒球聯盟比較〉,《休閒事業研究》。8(1):126-142。
三、學位論文
林偉立(2004):《中華職棒觀眾數預測模式之研究》。國立體育學院體育研究所碩士論文。
胡吟姍(2019):《消費者歧視之研究-以日本職業棒球聯盟為例》。國立臺灣師範大學體育學系碩士論文。
翁培文(2018):《以外顯因素、虛擬社群分析中華職棒觀眾人數》。國立臺灣師範大學地理學系博士論文。
簡世嘉(2011):《職棒進場觀眾人數之預測研究》。國立高雄應用科技大學工業工程與管理系碩士論文。
魏怡文(2017):《中華職棒觀眾人數影響因素之研究》。國立臺灣師範大學運動休閒與餐旅管理研究所碩士論文。
英文文獻
一、專書
Thorn J., Palmer P., Reuther D.(1984): The Hidden Game of Baseball: A Revolutionary Approach to Baseball and Its Statistics. (3rd) Chicago: The University of Chicago.
二、期刊論文
Barilla A. G., Gruben K., Levernier W.(2008) : The Effect Of Promotions On Attendance At Major League Baseball Games. The Journal of Applied Business Research.Vol.24(3),1-13.
Brown D. T., Link C. R., Rubin S. L.(2017) : Moneyball After 10 Years: How Have Major League Baseball Salaries Adjust?. Journal of Sports Economics. Vol. 18(8), 771-786.
Burger J., Walters S. J. K.(2003) : Market Size, Pay, and Performance: A General Model Application to Major League Baseball. Journal of Sports Economics. 108-125.
Coates D., Harrison T.(2002) : Baseball Strikes and the Demand for Attendance. Department of Economics. 2-28.
Domazlicky B. R., Kerr P. M.(1990) : Baseball Attendance and the Designated Hitter. The American Economist. Vol.34, No.1, 62-68.
Fort R., Lee Y. H. (2006) : Stationarity and Major League Baseball Attendance Analysis. Journal of Sports Economics.Vol. 7, No. 4, 408-415.
Jewell T., Molina D. J. (2004) : Production Efficiency and Salary Distribution: The Case of US Major League Baseball. Scottich Journal of Political Economy. Vol. 51, No. 1, 127-142.
McDonald M., Rascher D. A.(2000) : Does Bat Day Make Cent? The Effect of Promotion on the Demand for Major League Baseball. Journal of Sports Economics. Vol. 14, 8-27.
Nardinelli C., Simon C. (1990): Customer Racial Discrimination in The Market for Memorabilia: The Case of Baseball. The Quarterly Journal of Economics. Vol. CV, Issue 3, 575-595.
Peach J. T., Fullerton S. L., Fullerton T. M. (2016) : An Ampirical Analysis of the 2014 Major League Baseball Season. Applied Economics Letters. Vol. 23, No. 2, 138-141.
Schoenrock A. (2009) : The Effects of Promotions on Attendance at Major League Baseball Games. Oshkosh Scholar. Vol. 4, 28-36.
Scully G. W.(1974) : Pay and Performance in Major League Baseball. The American Economic Review. Vol. 64, No. 6, 915-930.
Tao Yu-Li, Chuang Hwei-Lin, Eric S. Lin (2015) : Compensation and Performance in Major League Baseball: Evidence from Salary Dispersion and Team Performance. International Review of Economics and Finance. from :http://dx.doi.org/10.1016/j.iref.2015.10.037.
Wiseman F., Chatterjee S.(2003) : Team Payroll and Team Performance in Major League Baseball: 1985-2002. Economics Bulletin. Vol. 1, No. 2, 1-10.
Zygmont Z. X., Leadley J. C. (2005) : When Is the Honeymoon Over? Major League Baseball Attendance 1970-2000. Journal of Sport Management. Vol. 19,278-299.
三、網路文獻
Adams S. (2020/10/27). Rob Manfred Discusses MLB’s Revenue Losses. MLB Trade Rumors. Retrieved October 21, 2020. from: https://www.mlbtraderumors.com/2020/10/rob-manfred-nlb-debt-revenue-losses-commissioner.html
Brown M. (2019/12/22). MLB Sees Record Revenues Of $10.3 Billion For 2019. Forbs. Retrieved October 21, 2020. from: https://www.cnbc.com/2019/12/22/report-mlb-revenue-for-2019-season-a-record-10point7-billion.html
Kelly M. (2019/5/27). What is sabermetrics? Modern analytics impact nearly every part of today's game. MLB. Retrieved November 3, 2020. from: https://www.mlb棒.com/news/sabermetrics-in-baseball-a-casual-fans-guide
Nightengale B. (2020/9/15). Steve Cohen's $2.475 billion purchase of Mets is latest bellwether in sale of sports franchises. USA Today. Retrieved October 21, 2020. from: https://www.usatoday.com/story/sports/mlb/columnist/bob-nightengale/2020/09/15/new-york-mets-sale-steve-cohen-wilpon/5806326002/
Ozanian M. (2017/9/27). MLB Approves $1.2 Billion Sale Of Miami Marlins To Bruce Sherman-Led Group. Forbes. Retrieved October 21, 2020. from: https://www.forbes.com/sites/mikeozanian/2017/09/27/miami-marlins-1-2-billion-sale-to-burce-sherman-group-approved/#6cae5e5f728e
Reichard K. (2014/6/5). Average cost for family of four at MiLB game: $63.55. Retrieved October 21, 2020. from: https://ballparkdigest.com/201406057357/minor-league-baseball/news/average-cost-for-family-of-four-at-milb-game-6355
Sandomir R. (2012/3/27). Group Led by Magic Johnson Wins Auction to Buy Dodgers for $2.15 Billion. The New York Times. Retrieved October 21, 2020. from: https://www.nytimes.com/2012/03/28/sports/baseball/sale-of-dodgers-nears-a-resolution.html
Sawchik T.(2019/11). The Next Stage of the Air-Ball Revolution. FanGraphs. Retrieved November 3, 2020. from: https://tht.fangraphs.com/tht-annual-2018/the-next-stage-of-the-air-ball-revolution/
網路資源
Baseball History. MLB. from: http://mlb.com/mlb/history/index.jsp
Baseball Referance. from: https://www.baseball-reference.com/
United States Census. from: https://www.census.gov/
FanGraphs. from: https://www.fangraphs.com/
mlb.com. MLB. from: https://www.mlb.com/
Minnesota Geospatial Commons. from: https://gisdata.mn.gov/
NYC OpenData. from: https://opendata.cityofnewyork.us/
Statcast. MLB. from: http://m.mlb.com/glossary/statcast
Statista. from: https://www.statista.com/
St. Petersburg, Data & Demographics. from: https://www.stpete.org/economic_development/data_demographics/index.php
Trackman. from: https://trackmanbaseball.com/