研究生: |
賴俊維 Lai, Jun-Wei |
---|---|
論文名稱: |
在6E模式中使用知識翻新原則於物聯網與視覺化實作課程對高中生之學習成效及學習態度影響之研究 A Study on the Impact of Using 6E Model with Knowledge Building Principles in IoT and Visualization Hands-on Activity for High School Students' Learning Performance and Learning Attitude |
指導教授: |
蕭顯勝
Hsiao, Hsien-Sheng |
口試委員: | 陳俊臣 趙貞怡 張玉山 蕭顯勝 |
口試日期: | 2021/07/30 |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 物聯網 、視覺化 、6E模式 、知識翻新原則 、STEM實作 |
英文關鍵詞: | Internet of Things, Visualization, 6E Model, Knowledge Building Principles, STEM Activity |
研究方法: | 實驗設計法 、 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200066 |
論文種類: | 學術論文 |
相關次數: | 點閱:207 下載:34 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
物聯網的應用與收集數據並視覺化的實作課程,適合融入STEM教學,其內容整合了科學、機械、數學、資訊等領域的綜合性知識與技術之應用,符合新課綱在科技領域方面,著重培養學生跨領域整合知識運用能力。STEM教學在教育領域蓬勃發展,需要有更適合的教學環境與主題來設計與教授課程。6E模式為STEM教學中具有成效的教學策略,知識翻新原則能營造以「想法」為中心的教學環境,由小組間共同分享與建構知識,運用6E模式結合知識翻新原則教學則能提升實作課程中學生的學習表現。
本研究透過發展不同教學策略(6E模式結合知識翻新原則、6E模式)的物聯網與視覺化實作課程,經由準實驗設計來瞭解課程對於學生學習成效與學習態度影響,並探討學習態度高低分群在實作能力上的關係。實驗結果顯示學習成效中,物聯網與視覺化知識未達顯著差異,而實作能力皆達顯著差異,進一步結果發現學習態度高低分群顯著影響實作能力的差異,並且實驗組表現皆優於對照組,說明6E模式結合知識翻新原則教學能增進學習態度與實作能力。
The application and data collection of the Internet of Things and visualization hands-on courses are suitable for integration into STEM teaching. Its content integrates the application of comprehensive knowledge and technology in science, mechanical, mathematics, information and other fields. It is in line with Curriculum Guidelines of 12-Year Basic Education in science and technology education, it focuses on cultivating students' ability to use interdisciplinary integrated knowledge. STEM teaching is booming in the field of education, so it needs a more suitable teaching environment and theme to design and teach courses. 6E model is an effective teaching strategy in STEM teaching. The principle of knowledge building can create an "idea" centered teaching environment. The knowledge can be shared and constructed by groups. The 6E model combined with knowledge building principles can improve students' learning performance in hands-on courses.
In this study, through the development of IoT and visualization hands-on courses with different teaching strategies (6E model combined with knowledge building principles, 6E model), through quasi-experimental design to understand the impact of courses on students' learning performance and learning attitude, and to explore the relationship between high and low performance group hands-on ability in learning attitude. The experimental results show that there is no significant difference between the IoT and visualization knowledge, but significant difference in hands-on ability, and learning attitude significantly affects the level of hands-on ability. The experimental group performs better than the control group, indicating that 6E model combined with knowledge building principles can improve learning motivation and hands-on ability.
大學入學考試中心(2017年11月)。108新課綱與素養導向命題精進方向。取自https://www.ceec.edu.tw/xmdoc/cont?xsmsid=0J177009711460336585&qcat=0J184547120181412833&sid=0J193581842777195097
朱耀明(2011)。 [動手做]的學習意涵分析-杜威的經驗學習觀點。生活科技教育,44(2),32-43。
行政院主計總處(2020)。事業人力僱用狀況調查報告。臺北市:作者。
李靜儀、龔心怡、李文生(2014)。未來教室,學習E 起Hi 起來。臺灣教育評論月刊,3(3),72-75。
范斯淳、游光昭(2016)。科技教育融入STEM課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。
徐新逸、項志偉(2016)。翻轉教室融入國小六年級資訊課程對批判性思考能力之影響。課程與教學,19(4),23-60。
秦夢群(1992)。高中教師管理心態、學生內外控,與學生學習習慣與態度之關係研究。教育與心理研究,15,129-172。
國發會(2021)。關鍵人才培育及延攬方案。臺北市:作者。
張春興(1994)。教育心理學-三化取向的理論與實踐。台北:東華書局。
教育部(2014)。十二年國民基本教育課程綱要-總綱。臺北市:作者。
教育部(2018)。十二年國民基本教育課程綱要-科技領域。臺北市:作者。
許維純(2019)。實作能力與實作評量。臺灣教育評論月刊,8(9), 51-53。
陳立庭(2017)。科技教育的真實評量–以篩選裝置為例。科技與人力教育季刊,3(3),20-39。
葉俊沂(2019)。物聯網發展趨勢與創新商機。臺灣經濟研究月刊, 42(10), 101-108。
葉俊巖、羅希哲(2015)。以Maker 的角度來看臺灣小學的資訊教育。臺灣教育評論月刊,4(12),110-114。
Akbar, M. A., & Rashid, M. M. (2018, September). Technology based learning system in internet of things education. In 2018 7th International Conference on Computer and Communication Engineering (ICCCE) (pp. 192-197). IEEE.
Aldowah, H., Rehman, S. U., Ghazal, S., & Umar, I. N. (2017, January). Internet of Things in higher education: a study on future learning. In Journal of Physics: Conference Series , 892(1), 012017
Ausburn, L. J., & Ausburn, F. B. (1978). Visual literacy: Background, theory and practice. Programmed Learning and Educational Technology, 15(4), 291-297.
Bereiter, C., & Scardamalia, M. (1987). An attainable version of high literacy: Approaches to teaching higher-order skills in reading and writing. Curriculum inquiry, 17(1), 9-30.
Berland, L. K., & Steingut, R. (2016). Explaining variation in student efforts towards using math and science knowledge in engineering contexts. International Journal of Science Education, 38(18), 2742-2761.
Besemer, S. P., & O'Quin, K. (1999). Confirming the three-factor creative product analysis matrix model in an American sample. Creativity Research Journal, 12(4), 287-296.
Besemer, S. P., & Treffinger, D. J. (1981). Analysis of creative products: Review and synthesis. The Journal of Creative Behavior, 15(3), 158-178.
Börner, K., Bueckle, A., & Ginda, M. (2019). Data visualization literacy: Definitions, conceptual frameworks, exercises, and assessments. Proceedings of the National Academy of Sciences, 116(6), 1857-1864.
Börner, K., Maltese, A., Balliet, R. N., & Heimlich, J. (2016). Investigating aspects of data visualization literacy using 20 information visualizations and 273 science museum visitors. Information Visualization, 15(3), 198-213.
Boy, J., Rensink, R. A., Bertini, E., & Fekete, J. D. (2014). A principled way of assessing visualization literacy. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1963-1972.
Burke, B. N. (2014). The ITEEA 6E Learning ByDesign™ Model: Maximizing Informed Design and Inquiry in the Integrative STEM Classroom. Technology and Engineering Teacher, 73(6), 14-19.
Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann.
Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5, 88-98.
Carracedo, F. S., Soler, A., Martín, C., López, D., Ageno, A., Cabré, J., ... & Gibert, K. (2018). Competency maps: An effective model to integrate professional competencies across a STEM curriculum. Journal of Science Education and Technology, 27(5), 448-468.
Chai, S., & Zhu, G. (2021). The relationship between group adoption of Knowledge Building Principles and performance in creating artifacts. Educational Technology Research and Development, 69(2), 787-808.
Chalmers, C., Carter, M. L., Cooper, T., & Nason, R. (2017). Implementing “big ideas” to advance the teaching and learning of science, technology, engineering, and mathematics (STEM). International Journal of Science and Mathematics Education, 15(1), 25-43.
Chang, Y. S., Chien, Y. H., Lin, H. C., Chen, M. Y., & Hsieh, H. H. (2016). Effects of 3D CAD applications on the design creativity of students with different representational abilities. Computers in Human Behavior, 65, 107-113.
Chen, J. C., Huang, Y., Lin, K. Y., Chang, Y. S., Lin, H. C., Lin, C. Y., & Hsiao, H. S. (2020). Developing a hands‐on activity using virtual reality to help students learn by doing. Journal of Computer Assisted Learning, 36(1), 46-60.
Chien, Y. H. (2017). Developing a pre-engineering curriculum for 3D printing skills for high school technology education. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 2941-2958.
Christensen, R., Knezek, G., & Tyler-Wood, T. (2015). Alignment of hands-on STEM engagement activities with positive STEM dispositions in secondary school students. Journal of Science Education and Technology, 24(6), 898-909.
Chung, C. C., Lin, C. L., & Lou, S. J. (2018). Analysis of the learning effectiveness of the STEAM-6E special course—A case study about the creative design of IoT assistant devices for the elderly. Sustainability, 10(9), 3040.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.), Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073-1091.
Cropley, D. H. (2016). Creativity in engineering. In Multidisciplinary Contributions to the Science of Creative Thinking (pp.155-173). Springer Singapore.
Dewey, J. (1938). Experience and education. New York, NY: Macmillan.
Feki, M. A., Kawsar, F., Boussard, M., & Trappeniers, L. (2013). The internet of things: the next technological revolution. Computer, 46(2), 24-25.
Fidai, A., Kwon, H., Buettner, G., Capraro, R. M., Capraro, M. M., Jarvis, C., ... & Verma, S. (2019, October). Internet of Things (IoT) Instructional Devices in STEM Classrooms: Past, Present and Future Directions. In 2019 IEEE Frontiers in Education Conference (FIE) (pp. 1-9). IEEE.
Finnish National Agency for Education. (2017). The new curricula in a nutshell. Retrieved from http://www.oph.fi/english/ curricula_and_qualifications/basic_education/curricula_2014
Finnish National Board of Education. (2016). National Core Curriculum for Basic Education 2014(English ed.). Helsinki, Finland: Author.
Fragou, O., & Papadopoulou, M. (2020). Exploring infographic design in higher education context: towards a modular evaluation framework. Journal of Visual Literacy, 39(1), 1-22.
Fransecky, R. B., & Debes, J. L. (1972). Visual Literacy: A Way to Learn--A Way to Teach. Washington, D.C: AECT Publications.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660.
Hashim, H., Ali, M. N., & Samsudin, M. A. (2017). Adapting Thinking Based Learning Approach and 6E Instructional Model in Implementing Green STEM Project. In Proceedings of The International Conference On The Scholarship of Teaching and Learning 2017 (pp. 68-82). Universiti Utara Malaysia.
He, J., Lo, D. C. T., Xie, Y., & Lartigue, J. (2016, October). Integrating Internet of Things (IoT) into STEM undergraduate education: Case study of a modern technology infused courseware for embedded system course. In 2016 IEEE Frontiers in Education Conference (FIE) (pp. 1-9). IEEE.
Hobbs, L., Clark, J. C., & Plant, B. (2018). Successful students–STEM program: Teacher learning through a multifaceted vision for STEM education. In STEM Education in the Junior Secondary (pp. 133-168). Springer, Singapore.
Hong, H. Y., & Sullivan, F. R. (2009). Towards an idea-centered, principle-based design approach to support learning as knowledge creation. Educational Technology Research and Development, 57(5), 613-627.
Hong, H. Y., Lin, P. Y., & Lee, Y. H. (2019a). Developing effective knowledge-building environments through constructivist teaching beliefs and technology-integration knowledge: a survey of middle-school teachers in northern Taiwan. Learning and Individual Differences, 76, 101787.
Hong, H. Y., Lin, P. Y., Chen, B., & Chen, N. (2019b). Integrated STEM learning in an idea-centered knowledge-building environment. The Asia-Pacific Education Researcher, 28(1), 63-76.
Hou H. T. (2010). Exploring the behavioural patterns in project-based learning with online discussion: Quantitative content analysis and progressive sequential analysis. The Turkish Online Journal of Educational Technology, 9(3), 52-60.
Hou, H. T., Chang, K. E., & Sung, Y. T. (2008). Analysis of problem-solving-based online asynchronous discussion pattern. Journal of Educational Technology & Society, 11(1), 17-28.
Hou, H. T., Chang, K. E., & Sung, Y. T. (2010). Applying lag sequential analysis to detect visual behavioural patterns of online learning activities. British Journal of Educational Technology, 41(2), 25-27.
Hsiao, H. S., Chang, C. S., Lin, C. Y., Chang, C. C., & Chen, J. C. (2014). The influence of collaborative learning games within different devices on student’s learning performance and behaviours. Australasian Journal of Educational Technology, 30(6), 652-669.
Hsiao, H. S., Lin, Y. W., Lin, K. Y., Lin, C. Y., Chen, J. H., & Chen, J. C. (2019). Using robot-based practices to develop an activity that incorporated the 6E model to improve elementary school students’ learning performances. Interactive Learning Environments, 1-15.
Ji, W., Xu, J., Qiao, H., Zhou, M., & Liang, B. (2019). Visual IoT: Enabling internet of things visualization in smart cities. IEEE Network, 33(2), 102-110.
Kaniawati, D. S., & Suryadi, S. (2017). Integration of STEM education in learning cycle 6E to improve problem solving skills on direct current electricity. Proceeding of ICMSE, 3(1), 106-109.
Katehi, L., Pearson, G., & Feder, M. (2009). Engineering in K-12 Education: Understanding the Status and Improving the Prospectus. Washington, DC: National Academies Press.
Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11.
Kortuem, G., Bandara, A. K., Smith, N., Richards, M., & Petre, M. (2012). Educating the Internet-of-Things generation. Computer, 46 (2), 53-61.
Kusmin, M., Saar, M., & Laanpere, M. (2018, April). Smart schoolhouse—designing IoT study kits for project-based learning in STEM subjects. In 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 1514-1517). IEEE.
Lai, Y. H., Chen, S. Y., Lai, C. F., Chang, Y. C., & Su, Y. S. (2019). Study on enhancing AIoT computational thinking skills by plot image-based VR. Interactive Learning Environments, 1-14.
Lee, S., Kim, S. H., & Kwon, B. C. (2016). Vlat: Development of a visualization literacy assessment test. IEEE Transactions on Visualization and Computer Graphics, 23(1), 551-560.
Lee, S., Kwon, B. C., Yang, J., Lee, B. C., & Kim, S. H. (2019). The correlation between users’ cognitive characteristics and visualization literacy. Applied Sciences, 9(3), 488.
Lei, C., & Chan, C. K. (2018). Developing metadiscourse through reflective assessment in knowledge building environments. Computers & Education, 126, 153-169.
Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020). Research and trends in STEM education: a systematic review of journal publications. IJ STEM Ed 7, 11.
Lin, F., & Chan, C. K. (2018a). Examining the role of computer‐supported knowledge‐building discourse in epistemic and conceptual understanding. Journal of Computer Assisted Learning, 34(5), 567-579.
Lin, F., & Chan, C. K. (2018b). Promoting elementary students’ epistemology of science through computer-supported knowledge-building discourse and epistemic reflection. International Journal of Science Education, 40(6), 668-687.
Lin, K. Y., Hong, H. Y., & Chai, C. S. (2014). Development and validation of the knowledge-building environment scale. Learning and Individual Differences, 30, 124-132.
Lin, K. Y., Hsiao, H. S., Williams, P. J., & Chen, Y. H. (2020). Effects of 6E-oriented STEM practical activities in cultivating middle school students’ attitudes toward technology and technological inquiry ability. Research in Science & Technological Education, 38(1), 1-18.
Madani, R., Moroz, A., Baines, E., & Makled, B. (2016). Realising a child's imagination through a child-led product design for both two-dimensional and three-dimensional products. International Journal of Materials and Product Technology, 52(1-2), 96-117.
Maltese, A. V., Harsh, J. A., & Svetina, D. (2015). Data visualization literacy: Investigating data interpretation along the novice—expert continuum. Journal of College Science Teaching, 45(1), 84-90.
Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6(1), 2.
McClure, C. R. (1994). Network literacy: A role for libraries?. Information Technology and libraries, 13(2), 115.
McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30-46.
Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29-40.
National Academy of Engineering, & National Research Council. (2014). STEM integration in K-12 education: Status, Prospects, and an Agenda for Research. Washington, DC: The National Academies Press.
National Science and Technology Council. (2018). A Course For Success: America’s Strategy For Stem Education. Retrieved from https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
Nuhoğlu Kibar, P., & Akkoyunlu, B. (2017). Fostering and assessing infographic design for learning: the development of infographic design criteria. Journal of Visual Literacy, 36(1), 20-40.
Radloff, J., & Guzey, S. (2016). Investigating preservice STEM teacher conceptions of STEM education. Journal of Science Education and Technology, 25(5), 759-774.
Roth, W. M., Bowen, G. M., & McGinn, M. K. (1999). Differences in graph‐related practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 36(9), 977-1019.
Salinger, G., & Zuga, K. (2009). Background and history of the STEM movement. The overlooked STEM imperatives: Technology and En-gineering, 4-9. Reston, VA: ITEEA.
Sanders, M. (2009). STEM, STEM Education, STEMmania: A Series of circumstances has once more created anopportunity for technology educators to develop and implement new integrative approaches to STEM educationchampioned by STEM Education reform doctrine over the past two decades. The Technology Teacher, 68(4),20-26.
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith (Ed.) Liberal Education in a Knowledge Society (pp. 67-98). Chicago: Open Court.
Scardamalia, M. (2004). CSILE/Knowledge Forum. In Education and Technology: An Encyclopedia (pp. 183-192). Santa Barbara: ABC-CLIO.
Scardamalia, M., & Bereiter, C. (2003). Knowledge building environments: Extending the limits of the possible in education and knowledge work. In A. DiStefano, K.E. Rudestam, & R. Silverman (Eds.), Encyclopedia of Distributed Learning. Thousand Oaks, CA: Sage Publications.
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In K. Sawyer (Ed.), Cambridge Handbook of the Learning Sciences (pp. 97-118).New York: Cambridge University Press.
Schelly, C., Anzalone, G., Wijnen, B., & Pearce, J. M. (2015). Open-source 3-D printing technologies for education: Bringing additive manufacturing to the classroom. Journal of Visual Languages & Computing, 28, 226-237.
Seet, C. H., & Hong, H. Y. (2018, August). Understanding the effects of online collaborative knowledge-building activities on pre-service teachers’ views of “learning”: a case study using triple cross-validation analysis. In International Conference on Innovative Technologies and Learning (pp. 51-60). Springer, Cham.
Spyropoulou, N., Glaroudis, D., Iossifides, A., & Zaharakis, I. D. (2020). Fostering Secondary Students' STEM Career Awareness through IoT Hands-On Educational Activities: Experiences and Lessons Learned. IEEE Communications Magazine, 58(2), 86-92.
Tao, D., & Zhang, J. (2018). Forming shared inquiry structures to support knowledge building in a grade 5 community. Instructional Science, 46(4), 563-592.
Taylor, C. (2003). New kinds of literacy, and the world of visual information: explanatory and instructional graphics and visual information literacy. Pridobljeno, 13(11), 2015.
Techakosit, S., & Nilsook, P. (2018). The development of STEM literacy using the learning process of scientific imagineering through AR. International Journal of Emerging Technologies in Learning (iJET), 13(1), 230-238.
Triana, D., Anggraito, Y. U., & Ridlo, S. (2020). Effectiveness of Environmental Change Learning Tools Based on STEM-PjBL Towards 4C Skills of Students. Journal of Innovative Science Education, 9(2), 181-187.
Tsai, K. C. (2016). Fostering creativity in design education: Using the creative product analysis matrix with chinese undergraduates in Macau. Journal of Education and Training Studies, 4(4), 1-8.
Tseng, K. H., Chang, C. C., Lou, S. J., & Chen, W. P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning. International Journal of Technology and Design Education, 23(1), 87-102.
Vanhanen, J., & Lehtinen, T. O. (2014). Software engineering problems encountered by capstone project teams. International Journal of Engineering Education, 30(6), 1461-1475.
Vokatis, B., & Zhang, J. (2016). The Professional Identity of Three Innovative Teachers Engaging in Sustained Knowledge Building Using Technology. Frontline Learning Research, 4(1), 58-77.
Wang, L., Fu, L., & Hu, X. (2018). A series of scientific practice activities for increasing middle school students’ interest in robot. In Proceedings of the 2018 International Conference on Big Data and Education (pp. 112–115). Waikiki, Hawaii.
Wilson, S. B., & Varma-Nelson, P. (2016). Small groups, significant impact: A review of peer-led team learning research with implications for STEM education researchers and faculty. Journal of Chemical Education, 93(10), 1686-1702.
Wu, Y. T., & Wang, L. J. (2016). Research trends in technology-enhanced knowledge building pedagogies: A review of selected empirical research from 2006 to 2015. Journal of Computers in Education, 3(3), 353-375.
Yasin, A. I., Prima, E. C., & Sholihin, H. (2018). Learning Electricity Using Arduino-Android Based Game to Improve STEM Literacy. Journal of Science Learning, 1(3), 77-94.
Ziaeefard, S., Miller, M. H., Rastgaar, M., & Mahmoudian, N. (2017). Co-robotics hands-on activities: A gateway to engineering design and STEM learning. Robotics and Autonomous Systems, 97, 40-50.
Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. (2010). From today's intranet of things to a future internet of things: a wireless-and mobility-related view. IEEE Wireless Communications, 17(6), 44-51.