簡易檢索 / 詳目顯示

研究生: 林煦翌
Lin, Hsu-Yi
論文名稱: 長短牙型鬼豔鍬形蟲咬合力與打鬥行為差異
A War of Long Mandible and Forceful Bite Morph-Specific Fighting Styles in Stag Beetles (Odontolabis siva parryi)
指導教授: 林仲平
Lin, Chung-Ping
口試委員: 許鈺鸚
Hsu, Yu-Ying
沈聖峰
Shen, Sheng-Feng
林仲平
Lin, Chung-Ping
口試日期: 2023/06/20
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 80
中文關鍵詞: 鍬形蟲科武器雄性競爭咬合力行為序列分析性擇
英文關鍵詞: animal contests, dimorphism, divergent fighting contexts hypothesis, male-male competition, Lucanidae, sexual selection
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300876
論文種類: 學術論文
相關次數: 點閱:149下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在動物的雄性競爭中,擁有不同武器型態的個體,可能採取特定的打鬥策略及打鬥行為使武器發揮最大功能(打鬥情境分化假說divergent fighting contexts hypothesis)。雄性鍬形蟲具有特化的大顎做為武器,大顎尺寸及咬合力經常是打鬥勝負的決定因子。不同於多數鍬形蟲大顎型態受體型影響,鬼豔鍬形蟲(Odontolabis siva)的大型個體出現長牙型(major)及短牙型(minor),因此鬼豔鍬形蟲提供了檢驗物種在體型相近的情況下,不同武器型態如何影響打鬥行為的良好案例。本研究測試打鬥情境分化假說並探討大顎型態如何影響咬合力及打鬥行為,研究預期體型相近的短牙型比長牙型有較大的咬合力,而較長的大顎則有利於鉗著對手身體並將對手拋開。研究採集鬼豔鍬形蟲野外個體,先進行異速生長分析確認型態與型值的關係,之後進行咬合力測量與體型相近配對的打鬥實驗,記錄打鬥影片各階段打鬥行為發生頻率與持續時間,利用複迴歸模型分析型態對咬合力及打鬥行為發生頻率的相關性,並以行為序列分析建立各形態組間的打鬥行為序列。結果指出,鬼豔鍬形蟲長牙型為等速生長,而短牙型為正異速生長,顯示短牙型中的大型個體對武器發育的投資比例相對身體增加。相同體型的大型個體中短牙型咬合力大於長牙型,短牙型發生纏鬥(tussle)的機率高於長牙型。長牙型傾向以鉗著頭胸(clamp-HT)的打鬥策略拋開對手,而短牙型則使用纏鬥(tussle)或鉗著大顎(clamp-M)的打鬥策略,研究結果支持打鬥情境分化假說,武器型態為特定打鬥策略的適應演化結果。

    Animal weapons are highly diverse in forms, but the evolutionary drivers for weapon diversity remain unexplored. One of the most compelling explanations for weapon diversity posits that weapon forms is adaptations of species-specific fighting styles, and selection for optimizing weapon performance under different fighting styles can drive evolutionary changes in weapon forms (divergent fighting contexts hypothesis). The study tested the prediction from this hypothesis that male morphs with different weapon forms should exhibit distinct fighting styles to enhance combat performance in Odontolabis siva parryi stag beetles. This study examined mandible allometries, measured bite forces and characterized fighting behaviors of stag beetles in size-matched contests by controlling the effect of body sizes on contest outcomes. The results show that O. siva parryi consists of two clearly differentiated male morphs and weapon forms: majors with long, slender and smooth mandibles; and minors with short, wide and tusked mandibles. A positive relationship between bite force and mandible size in minors suggests that weapons size is an honest signal of bite performance in minors. While negative relationship between bite force and mandible size in majors indicates weapon size cannot predict bite performance in majors. Majors primarily use their long and slender mandibles to grasp the head or thorax of rivals and lift them (fighting style of grasp and lift). In contrast, minors with short and wide mandibles mostly tussle or clamp onto the mandibles of rivals and lift them (fighting style of tussle and lift). By adopting morph-specific fighting styles to win the contests, majors have a mechanical advantage of longer reaches, while minors enjoy a physical advantage of higher bite forces than their rivals. Remarkably, majors with longer mandibles and minors with higher bite forces each win an approximately equal proportion of size-matched contests, indicating that two distinct weapon forms and fighting styles are probably equally effective in combats. Our research provides the first empirical evidence in stag beetles suggesting that weapon forms adapt behavior to enhance combat performance under specific fighting styles.

    誌 謝 i 摘 要 ii Abstract iii Content v Introduction 1 Material and method 7 Study Organis 7 Insect Collecting and Rearing 7 Morphological Measurements 8 Allometry Analyses 8 Bite Force Measurements 9 Size-matched and Random-match Contests 9 Sequential Analyses of Fighting Behaviors 12 Statistical Analyses 13 Results 14 Allometry 14 Bite Performance 14 Size-Matched Contests and Fighting Styles 15 Random-matched and assessment strategy 17 Male Morph and Contest Aggression 18 Discussion 18 Major and Minor Are Two Distinct Male Morphs and Weapon Forms 18 Minor Invests Proportionally More Than Major in Weapon Production Relative to Body Growth 19 Weapon Size Is an Honest Signal of Bite Performance for Minor, But Not Major 20 Larger Male Bites More Forcefully Than Smaller Male 20 Weapon of Major and Minor Adapt to Morph-Specific Fighting Style 21 A War of Long Mandible of Major and Forceful Bite of Minor 22 RHP and assessment strategy 23 Exaggerated Mandibles of Major Are Weapons, Not Threat Signals 23 Reference 25 Tables 29 Figures 39 Supplementary figures 49 Supplementary Tables 56

    Andersson MB. 1994. Sexual Selection. Princeton University Press, Princeton, NJ, USA.
    Bakeman R, Robinson BF, Quera V. 1996. Testing sequential association: Estimating exact p values using sampled permutations. Psychol Methods 1: 4–15.
    Beebe W. 1947. Notes on the Hercules Beetle, Dynastes hercules (Linn.), at Rancho Grande, Venezuela, with special reference to combat behavior. Zoologica 32: 109–116.
    Caro T, Graham C, Stoner C, Flores M. 2003. Correlates of horn and antler shape in bovids and cervids. Behav Ecol Sociobiol 55: 32–41.
    Chang YZ. 2006. Stag Beetles 54 (2nd Ed.). Yuan-Liou Publisher, Taipei, Taiwan. 160p.
    Chen ZY, Hsu Y, Lin CP. 2020. Allometry and fighting behaviour of a dimorphic stag beetle Cyclommatus mniszechi (Coleoptera: Lucanidae). Insects 11: 81.
    Chen ZY, Lin CP, Hsu Y. 2022. Stag beetle Cyclommatus mniszechi employs both mutual-and self-assessment strategies in male-male combat. Behav Process 202: 104750.
    Csardi G, Nepusz T. 2006. The igraph software package for complex network research. InterJournal, complex systems 1695: 1–9.
    Darwin C. 1871. The Descent of Man, and Selection in Relation to Sex. John Murray, London, UK.
    Eberhard WG. 1977. Fighting behavior of male Golofa porteri (Scarabeidae: Dynastinae). Psyche (Stuttg) 84: 292–298.
    Eberhard WG. 1980. Horned beetles. Sci Am 242: 166–182.
    Eberhard WG, Gutiérrez EE. 1991. Male dimorphisms in beetles and earwigs and the question of developmental constraints. Evolution 45: 18–28.
    Eberhard WG, Rodríguez RL, Huber BA, Speck B, Miller H, Buzatto BA, Machado G. 2018. Sexual selection and static allometry: The importance of function. Q Rev Biol 93: 207–250.
    Emlen DJ. 2001. Costs and the diversification of exaggerated animal structures. Science, 291: 1534–1536.
    Emlen DJ. 2008. The evolution of animal weapons. Ann Rev Ecol Evol Syst 39: 387–413.
    Emlen DJ, Nijhout HF. 2000. The development and evolution of exaggerated morphologies in insects. Ann Rev Entomol 45: 661–708.
    Friard O, Gamba M, Fitzjohn R. 2016. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol 7: 1325–1330.
    Gotoh H, Cornette R, Koshikawa S, Okada Y, Lavine LC, et al. 2011. Juvenile hormone regulates extreme mandible growth in male stag beetles. PLoS ONE 6: e21139.
    Goyens J, Dirckx J, Dierick M, Van Hoorebeke L, Aerts P. 2014. Biomechanical determinants of bite force dimorphism in Cyclommatus metallifer stag beetles. J Exp Biol 217: 1065–1071.
    Goyens J, Dirckx J, Aerts P. 2015a. Stag beetle battle behavior and its associated anatomical adaptations. J Insect Behav 28: 227–244.
    Goyens J, Dirckx J, Aerts P, Davidowitz G. 2015b. Costly sexual dimorphism in Cyclommatus metallifer stag beetles. Funct Ecol 29: 35–43.
    Goyens J, Dirckx J, Aerts P. 2016. Jaw morphology and fighting forces in stag beetles. J Exp Biol 219: 2955–2961.
    Green PA, Patek SN. 2018. Mutual assessment during ritualized fighting in mantis shrimp (Stomatopoda). Proc R Soc Lond Ser B-Biol Sci 285: 1871.
    Herrel A, Spithoven L, Van Damme R, De Vree F. 1999. Sexual dimorphism of head size in Gallotia galloti: testing the niche divergence hypothesis by functional analyses. Funct Ecol 13: 289–297.
    Hongo Y. 2003. Appraising behaviour during male-male interaction in the Japanese horned beetle Trypoxylus dichotomus septentrionalis (Kono). Behaviour 140: 501–517.
    Hongo Y, Okamoto K. 2013. Interspecific contests between males of two Japanese stag beetle species, Lucanus maculifemoratus and Prosopocoilus inclinatus: What overcomes a body size disadvantage? Behaviour 150: 39–59.
    Huang JP, Lin CP. 2010. Diversification in subtropical mountains: Phylogeography, Pleistocene demographic expansion, and evolution of polyphenic mandibles in Taiwanese stag beetle, Lucanus formosanus. Mol Phylogenet Evol 57: 1149–1161.
    Huang, TI. (2018). Diversity and Ecology of Stag Beetles (Lucanidae). In: Ulyshen, M. (eds) Saproxylic Insects. Zoological Monographs, vol 1. Springer, Cham.
    Kawano K. 2000. Genera and allometry in the stag beetle family Lucanidae, Coleoptera. Ann Entomol Soc Am 93: 198–207.
    Knell RJ. 2009. On the analysis of non-linear allometries. Ecol Entomol 34: 1–11.
    Knell RJ, Pomfret JC, Tomkins JL. 2004. The limits of elaboration: curved allometries reveal the constraints on mandible size in stag beetles. Proc R Soc Lond Ser B-Biol Sci 271: 523–528.
    Kodric-Brown A, Sibly RM, Brown JH. 2006. The allometry of ornaments and weapons. Proc Natl Acad Sci USA 103: 8733–8738.
    Kojima W, Sugiura S, Makihara H, Ishikawa Y, Takanashi T. 2014. Rhinoceros beetles suffer male-biased predation by mammalian and avian predators. Zool Sci 31: 109–115.
    Lane, SM. 2018. What is a weapon? Integr Comp Biol 58: 1055-1063.
    Lundrigan B. 1996. Morphology of horns and fighting behavior in the family Bovidae. J Mammal 77: 462–475.
    Matsumoto K, Knell RJ. 2017. Diverse and complex male polymorphisms in Odontolabis stag beetles (Coleoptera: Lucanidae). Sci Rep 7: 1–11.
    McCullough EL, Tobalske BW, Emlen DJ. 2014. Structural adaptations to diverse fighting styles in sexually selected weapons. Proc Natl Acad Sci 111: 14484–14488.
    McCullough EL, Ledger KJ, O’Brien DM, Emlen DJ. 2015. Variation in the allometry of exaggerated rhinoceros beetle horns. Anim Behav 109: 133–140.
    McCullough EL, Miller CW, Emlen DJ. 2016. Why sexually selected weapons are not ornaments. Trends Ecol Evol 31: 742–51.
    Mills MR, Nemri RS, Carlson EA, Wilde W, Gotoh H, Lavine LC, Swanson BO. 2016. Functional mechanics of beetle mandibles: honest signaling in a sexually selected system. J Exp Zool Part A 325: 3–12.
    Mizunuma T, Nagai S. 1994. The Lucanid Beetles of the World; Mushisha, Tokyo, Japan.
    Nijhout H, Wheeler DE. 1996. Growth models of complex allometries in holometabolous insects. Am Nat 148: 40–56.
    O’Brien DM, Boisseau RP, Duell M, McCullough E, Powell EC, Somjee U, Solie S, Hickey AJ, Holwell GI, Painting CJ, et al. 2019. Muscle mass drives cost in sexually selected arthropod weapons. Proc R Soc B 286: 20191063.
    Palaoro AV, Peixoto PEC. 2022. The hidden links between animal weapons, fighting style, and their effect on contest success: a meta‐analysis. Biol Rev 97: 1948–1966.
    RStudio Team. 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
    Shiokawa T, Iwahashi O. 2000. Mandible dimorphism in males of a stag beetle, Prosopocoilus dissimilis okinawanus (Coleoptera: Lucanidae). Appl Entomol Zool 35: 487–494.
    Simmons LW, Emlen DJ. 2006. Evolutionary trade-off between weapons and testes. Proc Natl Acad Sci USA 103: 16346–16351.
    Songvorawit N, Butcher BA, Chaisuekul C. 2018. Resource holding potential and the outcome of aggressive interactions between paired male Aegus chelifer chelifer (Coleoptera: Lucanidae) stag beetles. J Insect Behav 31: 347–360.
    West-Eberhard MJ. 1983. Sexual selection, social competition, and speciation. Q Rev Biol 58: 155–83.

    下載圖示
    QR CODE