簡易檢索 / 詳目顯示

研究生: 應國良
Kuo-Liang Ying
論文名稱: 分散劑的合成與在鈦酸鋇陶瓷材料的應用
Dispersant synthesis and its Dispersing Ability on Barium Titanate
指導教授: 許貫中
Hsu, Kung-Chung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 108
中文關鍵詞: 分散劑鈦酸鋇粉末合成分散性質
英文關鍵詞: BaTiO3 powder, synthesis, properties
論文種類: 學術論文
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為合成一種兩性高分子聚合物
    poly (α-N,N-dimethyl-acryloxyethyl) ammonium ethnateacrylamide ,(PDAAE),作為鈦酸鋇漿體的分散劑並改變起始劑濃度、控制反應時間和反應溫度來改變PDAAE分子量,以便找出具最佳分散效果的PDAAE分子量,最後和商用之分散劑ammonium salt of polymethylacrylic acid(PMAAN)來作比較。而PDAAE係以丙烯酸二甲胺乙酯和氯醋酸鈉反應生成DAAE單體,再與丙烯醯胺經自由基反應而得,合成之DAAE單體和PDAAE均以1H-NMR與IR光譜確認結構,並利用GPC測量PDAAE之分子量。
    本研究主要為利用黏度法、沈降體積法、粒徑分佈法等方法來比較兩種分散劑的分散效果。並利用表面電位法、高分子在水中之解離程度和高分子在粒子表面之吸附程度來作解釋。最後,利用ICP-AES來測量鋇離子溶出量,並以此判斷分散劑對鈦酸鋇在水中的鋇離子溶出量之影響。
    結果顯示Mw=1.06×105之PDAAE在鈦酸鋇漿體中之分散效果最好,並發現漿體中之鋇離子溶出量明顯減少,主要原因為在pH=12時,Mw=1.06×105之PDAAE在鈦酸鋇粉體表面有較大之飽和吸附量,因此得以吸附和結合較多之鋇離子。
    另外,鈦酸鋇漿體經由壓胚和燒結後,測量胚體之燒結密度、生胚密度、介電常數和介電損失後,以添加Mw=1.06×105之PDAAE的鈦酸鋇漿體製成之生胚有較大之密度,而燒結後之胚體,其介電常數值較高,介電損失較低並且燒結體之相對密度也較大,因此顯示Mw=1.06×105之PDAAE對鈦酸鋇漿體之分散效果最好。

    This study has prepared an amphibious dispersant, poly (α-N,N-dimethyl-acryloxyethyl) ammonium ethnateacrylamide ,(PDAAE)was used for the dispersion of BaTiO3(BT) colloids in aqueous solution, and used change initiator concentration, reaction temperature and reaction time to control molecule weight, and compared to that of a commercial acrylic-base polymeric dispersant, ammonium salt of polymethylacrylic acid PMAAN (Darven C).
    First, poly (α-N,N-dimethyl-acryloxyethyl) ammonium ethnateacrylamide was prepared from α-N,N-dimethyl acryloxyethyl and acrylamide through a free radical copolymerization, and α-N,N-dimethyl acryloxyethyl was made by reacting 2-(Dimethylamino)ethyl acrylate with sodium chloroacetate. The chemical structures of PDAAE have been identified and confirmed by H-NMR and IR spectra, and molecule weight was measured by GPC.
    Second, the dispersion properties of each dispersant have been evaluated by the viscosity, sedimentation volume, particle size distribution, and used zeta potential, fraction dissociated, adsorption consistency to explain. The result indicate that PDAAE have Mw=1.06×105 show better dispersion effects on the BaTiO3 powder in aqueous slurries than other molecule weight and PMAAN. The PDAAE causes less Ba2+ ions to be dissolved into solution, for greater amount of PDAAE adsorbed on BaTiO3 particles and more Ba2+ ions also adsorbed. The resulting green parts with PDAAE (Mw=1.06×105) show greater density, and the sintered parts have higher dielectric constant, lower dielectric loss, and greater density. Thus, PDAAE (Mw=106,000) exhibit better dispersion properties than other molecule weight and PMAAN.

    目錄 第一章 緒論-----------------------------------------------1 第二章 文獻回顧-------------------------------------------3 2-1 鈦酸鋇粉末的合成------------------------------------3 2-2 電容器之介紹----------------------------------------5 2-3 鈦酸鋇電性之研究-----------------------------------11 2-4 分散原理-------------------------------------------13 2-4-1粒子之特性--------------------------------------13 2-4-2 粒子間之作用力---------------------------------15 2-4-3 分散機構---------------------------------------16 2-5 界面活性劑之影響-----------------------------------21 2-5-1 界面活性劑之種類-------------------------------21 2-5-2 界面活性劑對粒子表面之吸附現象和等溫吸附模式---22 2-6 分散效果之評估方法---------------------------------24 2-6-1分散系統之流變性質------------------------------24 2-6-2 沈降體積法-------------------------------------26 第三章 高分子的合成與鑑定--------------------------------28 3-1前言------------------------------------------------28 3-2 高分子之合成---------------------------------------28 3-2-1 藥品和儀器設備---------------------------------28 3-2-2 實驗步驟---------------------------------------30 3-3 分子量之量測---------------------------------------34 3-4 高分子分散劑之固含量測定---------------------------35 3-5 結果和討論-----------------------------------------36 3-6 分子量之測量---------------------------------------37 3-7 固含量之測量---------------------------------------37 第四章 BaTiO3粒子分散效果之測試--------------------------43 4-1前言------------------------------------------------43 4-2 實驗評估-------------------------------------------44 4-2-1 藥品與儀器設備---------------------------------44 4-2-2 實驗材料---------------------------------------45 4-3實驗製程--------------------------------------------46 4-3-1漿料混合----------------------------------------46 4-3-2燒結測試----------------------------------------46 4-4 性質分析-------------------------------------------47 4-4-1 分散劑之解離率量測-----------------------------47 4-4-2 分散劑在BaTiO3粉末之吸附量測量-----------------47 4-4-3 黏度測試---------------------------------------47 4-4-4 沈降體積之測量---------------------------------47 4-4-5 粒徑分佈測量-----------------------------------48 4-4-6 粒子表面電位之測量-----------------------------48 4-4-5 鋇離子溶出量測量-------------------------------48 4-4-6 胚體密度---------------------------------------49 4-4-7 介電常數和介電損失-----------------------------50 4-4-8 微結構分析-------------------------------------51 第五章 分散劑在鈦酸鋇粒子分散效果之結果和討論------------54 5-1 pH值對鈦酸鋇粉末之影響-----------------------------54 5-2 pH值對高分子分散劑之解離率之影響-------------------56 5-3 分散劑在鈦酸鋇粒子上之吸附情形---------------------62 5-4 流變性質測試---------------------------------------68 5-5 沈降體積之測試-------------------------------------71 5-6 粒徑分佈之測試-------------------------------------75 5-7 粒子表面電位測試-----------------------------------81 5-8 鈦酸鋇電性之研究-----------------------------------85 5-9 鈦酸鋇密度測試-------------------------------------88 5-10微結構分析-------------------------------------------------------------91 5-11 Ba2+溶出量測試-------------------------------------98 第六章 結論---------------------------------------------101 參考資料----------------------------------------104

    1.G. Y. Carlos, B. R. Heberto, and M. Froylan, “Colloidal processing of BaTiO3 using ammonium polyacrylate as dispersant, ”Ceramics International, 26, 609-616 (2000).
    2. K. Mikeska, and W. R. Cannon, “Advances in Ceramics, ” J. Am. Ceram. Soc., 165-183 (1984).
    3. J. H Jean, and H. R. Wang, “Dispersion of Aqueous Barium Titanate Suspensions with Ammonium Salt of Poly(methacrylic acid), ” J. Am. Ceram. Soc., 81 [6] 1589-99 (1998).
    4.李鴻銘,“異性兩性苯乙烯—馬來酸酐共聚合物之合成與特性,”國立 成功大學化工研究所碩士論文, 1995.
    5. A. W. M. de Laat, and W. P. T. Derks, “Colloidal Stabilization of BaTiO3 with Poly (vinyl alcohol) in Water, ” Colloids Surf. A., 71,147-53 (1993).
    6.Vis. Kumar, “Solution-Precipitation of Fine Powders of Barium Titanate and Strontium Titanate, ” J. Am.Ceram. Soc., 82 [10] 2580 -84 (1999).
    7.王惠民,“兩性高分子對黏土粒子行為之影響”, 國立成功大學化工研究所碩士論文, 1994.
    8. J. Cesarano, and I. A. Aksar, “Stability of Aqueous Al2O3 Sjuspensions with PolyCmethacrylic acid) Polyelectrolyte”, J. Am. Ceram. Soc., 71 [4] 250-55 (1988).
    9. C.C. Shih, and H.M. Hon, “Stabilization of aqueous Si3N4 suspensions with ammonium salt of poly(acrylic acid) at various pH, ”Mater. Chem. Phys., 57, 125-33 (1998).
    10. Z. C. Chem., T. A. Ring, and J. Lemaitre, “Stabilization and Processing of Aqueous BaTiO3 Suspensions with Polyacrylic Acid, ” J. Am. Ceram. Soc., 75 [12] 3201-208 (1992).
    11.吳玉祥,“鈦酸鋇製程與結晶構造分析之研究, ”國立台灣大學材料工程研究所博士論文,1994.
    12. K. Kudaka, K. Iizumi, and K. Sasaki, “Preparation of Stoichiometric Barium Titanyl Tetahydrate, ” J. Am. Ceram. Soc., Bull., 61 [11] 1236 (1982).
    13. K.S. Mazdiyasni, and L. M. Brown, “Synthesis of Nb2O5-Doped with BaTiO3 Improved Electrical Properties, ” J. Am. Ceram. Soc., 55[12] 633 -34 (1972).
    14. K.S. Mazdiyasni, “Fine Particle Peroveskite Processing, ”J. Am. Ceram. Soc. Bull., 63 [4] 591-94 (1984).
    15. W.J. Dawson, “Hydrothermal Synthesis of Adianced Ceramic Pow- ders, ”J. Am. Ceram. Soc. Bull., 67 [10] 1673-78 (1988).
    16.翁震良,“釵酸鋇及鈦酸鋇/鎳複合材料可靠度及電性之研究,” 國立台灣大學材料工程研究所碩士論文,2000.
    17. M.Hillert, “On the Theory of Normal and Abnormal Grain Growth,” Acta Metall., 13 [3] 227-38 (1965).
    18. G. Arlt, and D. Hennings, “Dielectric Properties of Fine-Grained Barium Titanate, ” J. Appl. Phys., 58, 1619-25 (1985).
    19. A. Yainaji, Y. Enomoto, K. Kinoshita, and T. Murakami, “Preparation, Characterization, and Properties of Dy-Doped Small-Grained BaTiO3 Ceramics, ” J. Am. Ceram. Soc., 60 [3-4] 97-101 (1977).
    20. M. Kahn, “Influence of Grain Growth on Dielectric Properties of Nb -Doped BaTiO3, ” J. Am. Ceram. Soc., 54 [9] 455-57 (1971).
    21. G.D. Parfitt, “Dispersion of Powders in Liquids”, 3rd. ed. Applied Science Publishers, Inc., New Jersey (1981).
    22. D.H. Napper, “Polymeric Stabilization of Colloidal Dispersions, ” Academic Press Inc., San Diego (1983).
    23. R.H. Ottewill, J. Colliod Interface Sci., 58, 357 (1977).
    24. J. TH, G. Overbeed, J. Colloid Interface Sci., 58, 408 (1977).
    25. T. Sato, and R. J. Ruch, “Stabilization of Colloid Dispersions by Polymer Adsorption, ” Marcel Dekker, Inc., New York (1980).
    26. D.H. Napper, J. Colloid Interface Sci., 58, 390 (1977).
    27. W. Heller, T.L. Pugh, J. Polymer Sci., 67, 203 (1960).
    28. B. Vincent, Advanced in Colloid and Interface Science, 4, 193-277 (1974).
    29. E.D. Goddard, and B. Vincent, “Polymer Adsorption and Dispersion Stability, ” ACS Symposium series, 240, Washinton, D.C. (1984).
    30. Th. F. Tadros, “The Effect of Polymer on Dispersion Properties, ” Academic Press, London (1982).
    31. I. Piirma, “Polymer Surfactants, ” Marcel Dekker Inc., New York (1992).
    32. J. M. H. M. Schentijens, G. J. Fleer, J. Phys. Chem., 83,1619 (1979).
    33. T. C. Patton, J. Paint Technol., 42 (551), 666 (1970).
    34. M.J. Rosen, “Surfactants and Interfacial Phenomena, ” John Wiley and Sons. Inc., New York (1978).
    35. G. D. Botsaris, and Y. M. Glazman, “Interfacial Phenomena in Coal Technology, ” Marcel Dekker, New York (1989).
    36. S.L. Rosen, “Fundamental Principles of Polymeric Materials, ” John Wiley and Sons., New York (1982).
    37.賴建吉,“親油基或親水基改良之馬來酸酐共聚合物之合成與其效果,” 國立成功大學化工研究所碩士論文,1992.
    38. R. Darby, B. Rogers, A. I. Ch. E. Journal, 26, 310 (1980).
    39. H.L. Cohen, J. Polym. Sci. Chem. Ed. 14 (1), 7 (1988).
    40. L. Charles, M. Cormick, C. B. J ohnson, “Macromolecules, ”21 (3), 686 (1988).
    41.虞邦英,“鈦酸鋇膠粒於水基溶液中之表面吸附及分散研究,” 國立台灣大學材料工程研究所碩士論文,2001.
    42.C.W.Chang, “Dissolution of Ba2+ and Its Effect on Dispersion Behavior of Aqueous BaTiO3 Suspension, ” 國立清華大學材料工程研究所碩士論文.
    43.D. A. Anderson, J. H. Adair, D. Miller, J. V. Biggers, and T. R. Shrout, “Surface Chemistry Effects on Ceramic Processing of BaTiO3 Powder, ” pp485-92 in Ceramic Transactions,Vol.1,Ceramic Powder Science ⅡA,Edited by G. L. Messing, E. R. Fuller Jr., H. Hausner, American ceramic Society,Westerville,Ohio (1988).
    44.C. J. Shih, B. H. Lung, and M. H. Hon, “Collidal processing of titanium nitride with poly-(methacrylic acid ) polyelectrolyte,” Materials Chem.and Phy.60,150-157(1999).
    45.R. J. Hunter, “Zeta Potential in Colloid Science-Principles and Applications, ”Academic Press, London (1981).
    46.A. Tsetsekou, C. Agrafiotis, and A. Milias, “Optimization of the rheological properties of alumina slurries for ceramic processing applications, PartⅠ:Slip-casting, ”J. Eur. Ceram. Soc., 21, 363-373 (2001).
    47.J. H. D. Hampton, S. B. Savage, and R. A. L. Drew, “Experimental analysis and modeling of slip casting, ” J. Am. Ceram. Soc.,71(12), 1040- 1045 (1988).
    48.R. Greenwod, and K. Kendall, “Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acous tophoresis, ”J. Eur. Ceram. Soc.,19,479-488(1999).
    49.M. C. Blanco-Lopez, B. Rand, and F. L. Riley, “The Property of Aqueous Phase Suspension of Barium Titanate, ” J. Eur. Ceram. Soc., 17,281- 287 (1997).
    50.Y. Fukuda, T. Togahi, Y. Suzuki, M. Naito, and H. Kamiya, “Influence of additive content of anionic polymer dispersant on dense alumina suspension viscosity, ”Chem. Eng. Sci., 56, 3005-3010 (2001).
    51.S. Biggs, “Steric and bridging forces between surfaces bearing adsorbed polymer : An atomic force microscopy study, ” Langmuir, 11 (1), 156-162 (1995).
    52.T. J. Senden, C. J. Drummona, and P. Kekicheff, “Atomic force microsc opy : Imaging with elecyrical double layer interactions, ” Langmuir, 10, 358-362 (1994).
    53.L. A. Xue, “Thermodynamic benefit of Abnormal Grain Growth in Pore Elimination During Sintering, ” J. Am. Ceram. Soc., 78 (8), 1536 -37 (1989).
    54.陳龍賓,“分散劑的合成以及對於鈦酸鋇漿體分散效能的評估”, 國立師範大學化學研究所碩士論文, 2002.
    55.W.C.Wei,S.J.Lu,B.K.Yu,“Characterization of Submicro Alumina Dispersions with Poly(methacrylic acid) Polyelectrolyte” J. Eur. Ceram. Soc., 15,155- 164(1995).
    56.C.J.Shih,M.H.Hon,“Electrokinetic and Rheological Properties of Aqueous TiN Suspensions with Ammonium Salt of Poly(methacrylic Acid)” J. Eur. Ceram. Soc., 19,2773- 2780 (1999).
    57.B.J.Briscoe,P.F.Luckham,“Optimising the Dispersion on Alumina Suspension Using Commercial Polyvalent Electrolyte Dispersants” J. Eur. Ceram. Soc., 18,2141- 2147 (1998).
    58.C.J.Shih,“Stability of colloidal silicon nitride suspension with poly-electrolyte” Ceramics International, 26, 47-55 (2000).
    59.S.,Baklouti,J.F.Baiamard,“Processing of aqueous α-Al2O3, α-SiO2, α-SiC suspensions with polyelectrolytes,” J. Eur. Ceram. Soc., 17,1387- 1392 (1997).
    60.L.Hung,“The change in structure of surfactant aggregates during adsorption/desorption processes and its effect on the stability of alumina suspension,” Colloids and Surfaces A:Physicochemical and Engineering Aspects,117,235-244,(1996).
    61.C.Li,“Effect of a comb-like amphiphilic polymer on the stability of alumina dispersions,”Colloids and Surfaces A:Physicochemical and Engineering Aspects,69,155-158,(1992).
    62.Q.luo.“Stabilization of alumina slurry for chemical mechanical polishing of copper,”Langmuir,69,3563-3566,(1996).
    63.吳心玲,“氧化鋁漿體的穩定性研究”,國立成功大學化學工程研究所碩士論文, 2000.
    64.J.M.Gaidis,“The effect of adsorption of superplasticizers on the surface of cement,”P.J.Andersen,17,805-811,(1987)

    無法下載圖示
    QR CODE