研究生: |
林立人 |
---|---|
論文名稱: |
植基於加權因子小腦模型控制器之設計 |
指導教授: |
洪欽銘
Shi, Chun-Xie 許全守 Hau, Chuan-Shou |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 類神經網路 、小腦模型控制器 、二次型最佳化控制 、殘差演算法 、迭代演算法 、球-桿平衡系統 、非最小相位系統 |
英文關鍵詞: | Neural Network, Cerebellar Model Articulation Controller, Quadratic Optimal Control, Residual Method, Iterative Method, Ball on Beam Control System, Nonminimum Phase System |
論文種類: | 學術論文 |
相關次數: | 點閱:266 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小腦模型控制器(CMAC)為類神經網路的一支系,構造簡單與演算法撰寫容易是此控制器的特色之一。但本研究發現,當使用簡單迭代法進行演算時,CMAC的誤差曲線會呈現巨幅地振盪然後收歛,此種情形於實際的控制應用裡是不被允許的,因此本研究提出加權因子的概念,改進了控制器在收歛曲線中所發生之振盪現象。
整合加權因子與小腦模型控制器,將此新的控制器命名為「加權因子小腦模型控制器」(WCMAC)。為測試其實用性,本論文之研究範圍包括WCMAC的原理分析、函數學習性能測試和實際控制測試,茲概述如下:
在WCMAC的原理分析裡,本研究採用條件數為測度依據,以實驗說明加權因子的施用能改善CMAC之關聯矩陣,使迭代運算次數明顯地減少。
就函數學習性能測試裡,以Sayil於2002年所整理之資料為依據,分別對連續型函數與非連續型函數進行學習記錄,其中配合殘差理論,發現WCMAC在此項測驗中,就學習的精度而言,WCMAC的性能測試明顯地不遜於他種演算法。
最後的實際控制測試,採用球-桿平衡系統為實驗對象,此為典型控制實驗室裡的測試工具,為一非最小相位系統。本論文以二次型最佳化控制理論設計一主控制器,然後施加WCMAC作為輔助控制器,實驗發現WCMAC能提高響應品質並且不會有學習發散的現象。
The Cerebellar Mode Articulation Controller (CMAC), one kind of Neural Network, is well known of its simple architecture and easily developed algorithm. We found that the curve of error is oscillational, and its situation is not acceptable for real time control, but after the heavy oscillation, it goes steady for some time when CMAC applied simple iterative algorithm. The concept of weighted factor is hereby proposed in order to improve the curve of error in a smoother converging curve.
This paper presents a novel WCMAC, weighted CMAC, to discuss whether or not that it can be suitably applied in the future. The following discussions are focuses on the 1) theory of WCMAC, 2) its learning ability for specific mathematical function and 3) experiment with WCMAC on Ball on Beam Control System.
Firstly, the numbers of iterative applied by WCMAC can be reduced after concluding the result of experiment that is based on the criteria of mathematical condition number.
Secondly, the responses of the WCMAC, when integrated with principle of residual are accurate as well as the other algorithms of CMAC based on the learning specific mathematical function that was adapted from the table from Sayil in 2002.
Finally, this study chooses the Ball on Bean System, a well-known nonminimum phase system, as a tester. We designed a main controller using theory of quadratic optimal control for the purpose of implementing WCMAC as an auxiliary controller. The responses of results found that the control system worked well with WCMAC applied.
英文部份
[1] J.S. Albus,”New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)”, Trans. ASME, Dyn. Syst. Meas., and Control, 1975, pp.220 – 227.
[2] J.S. Albus,”Data storage in the Cerebellar Model Articulation Controller (CMAC)”, Trans. ASME, Dyn. Syst. Meas., and Control, 1975, pp.228 – 233.
[3] J.S. Albus,” Theory of Cerebellar Function”, Mathematical Biosciences, Vol.10, No.1/2, 1971, pp. 25-61.
[4] W.S. Mischo, “A CMAC-type neural memory for control applications”, IEEE Conf. Microelectronics for Neural Networks, 1996, pp. 161 -167.
[5] L.G. Kraft and D.P. Campagna, “Comparison of Convergence Properties of CMAC neural network and Traditional Adaptive Controllers”, IEEE Proc. Decision and Control, vol.2, 1989, pp. 1744 -1745.
[6] L.G. Kraft and D.P. Campagna, “Comparison of CMAC architectures for neural network based control”, IEEE Conf. Decision and Control, vol.6, 1990 pp. 3267 -3269.
[7] F.H. Glanz; W.T. Miller and L.G. Kraft, ” An overview of the CMAC neural network”, IEEE Conf., Neural Networks for Ocean Engineering,, pp. 301 -308, 1991.
[8] P.E. An; S. Aslam-Mir; M. Brown; C.J.Harris and D. McLean, “Theoretical aspects of the CMAC and its application to high-dimensional aerospace modelling problems” IEE Conf. Control, vol. 2, 1994, pp. 1466 -1471.
[9] M. Brown and C.J.Harris, “The modelling abilities of the binary CMAC” IEEE Conf. Neural Networks, vol. 3, 1994, pp. 1335 -1339.
[10] Zi-Qin Wang; J.L Schiano and M. Ginsberg, “Hash-coding in CMAC neural networks,” IEEE Proc. Neural Networks, vol. 3, 1996, pp. 1698 -1703.
[11] Luo Zhong; Zhao Zhongming and Zhu Chongguang, “The unfavorable effects of hash coding on CMAC convergence and compensatory measure”, IEEE Proc. ICIPS, vol. 1, 1997, pp.419-422.
[12] Jianjuen Hu; J. Pratt and G. Pratt, “Stable adaptive control of a bipedal walking; robot with CMAC neural networks”, IEEE Proc. Robotics and Automation, vol. 2, 1999, pp. 1050 -1056.
[13] Ching-Tsan Chiang and Chun-Shin Lin, “Integration of CMAC and Radial basis function techniques”, IEEE Proc. Systems, Man and Cybernetics, vol. 4, 1995, pp.3263-3268.
[14] Menozzi and M.Y. Chow, “On the training of a multi-resolution CMAC neural network”, IEEE Proc. ISIE, vol. 3, 1997, pp.1201-1205.
[15] Chun-Shin Lin and Chien-Kuo Li, “A low-dimensional-CMAC-base neural network”, IEEE Proc. Systems, Man and Cybernetics, vol. 2, 1996, pp.1297-1302.
[16] King-Lung Huang; Shu-Cheng Hsieh and Hsin-Chia Fu, “Cascade-CMAC neural network applications on the color scanner to printer calibration”, IEEE Conf. Neural Networks, vol. 1, 1997, pp. 10 -15.
[17] J. Pallotta and L.G. Kraft, “Two dimensional function learning using CMAC neural network with optimized weight smoothing”, Proc., American Control Conference, vol. 1, 1999, pp. 373 -377.
[18] L.G. Kraft and J. Pallotta, “Vibration control using CMAC neural networks with optimized weight smoothing”, Proc., American Control Conference, vol. 2, 1999, pp. 1181 -1185.
[19] H. Shiraishi; S.L. Ipri and D.I.D. Cho, “CMAC neural network controller for fuel-injection systems”, IEEE Trans. Control Systems Technology, vol. 3,No. 1,1995, pp. 32 -38.
[20] S.H. Lane; D.A. Handelman and J.J. Gelfand, “Theory and development of higher-order CMAC neural networks”, IEEE Control Systems Magazine, vol. 12, 1992, pp. 23 -30.
[21] Ching-Tsan Chiang and Chun-Shin Lin, “Integration of CMAC and radial basis function techniques”, IEEE Conf. Systems, Man and Cybernetics, vol. 4, 1995, pp. 3263 -3268.
[22] Curtis F. Gerald and Patrick O. Wheatley, Applied Numerical Analysis, San Luis Obispo, California, Addison Wesley, 1989.
[23] Selahattin Sayil and Kwang Y.Lee,”A Hybrid Maximum Error with Neighborhood Training for CMAC”, IEEE Conf., Neural Networks,, pp. 165 -170, 2002.
[24] P. C. Park and J. Militzer,” A Comparison of Five Algorithms for the Training of CMAC Memories for Learning Control System”, Automatica, Vol. 28,No. 5, pp. 1027-1035, 1992.
[25] T. Szabo and G. Horvath,”Improving The Generalization Capability of The Binary CMAC”, Proc., International Joint Conference on Neural Nerwork, Vol. 3, pp. 85-90, 2000.
[26] Fu-Chuang Chen and Chih-Horng Chang, “Practical stability issues in CMAC neural network control systems”, IEEE Trans., Control Systems Technology, vol. 4, 1996, pp. 86 –91.
[27] C. C. Lin and F. C. Chen, “Improved CMAC Neural Network Control Scheme”, Elctronics Letters, Vol. 35, No 2, 1999, pp 157-158.
[28] Katsuhiko Ogata, Discrete-Time Control Systems, Upper Saddle River, New Jersey, Prentice Hall, 1995.
[29] Brian D. O. Anderson and John B. Moore, Linear Optimal Control, Englewood Cliffs, New Jersey, Prentice Hall, 1971.
[30] Amira INC., Laboratory Equipment for Reserch and Practicals of Control Engineering, Amira Gmbh, Taipei, Taiwan, 1999.
[31] Karl Johan Åström, Control System Design Lecture notes for ME 155A, 2002.
[32] Gilbert Strang, introduction to linear algebra, Mei Ya, Taipei, Taiwan, 1998.
[33] Roger A. Horn, Matrix Analysis, Cambridge University Press, NY, USA.
中文部份
[34] 張冠文, ”模糊推論積分型滑動模式之小腦模型控制器設計”,國立台灣師範大學工業教育研究所碩士論文,2002。
[35] 黃昭諺, ”間時滑動模式之可微分小腦模型控制器設計”,國立台灣師範大學工業教育研究所碩士論文,2001。