簡易檢索 / 詳目顯示

研究生: 許恆瑜
Hsu, Heng-Yu
論文名稱: 使用深度學習方法建立崩塌判釋模型
Building image classification model for landslide detection using deep learning
指導教授: 張國楨
Chang, Kuo-Chen
口試委員: 譚智宏
Tan, Zhi-Hong
陳俊愷
Chen, Chun-Kai
張國楨
Chang, Kuo-Chen
口試日期: 2023/07/01
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 60
中文關鍵詞: 崩塌遙測及地理資訊系統衛星影像深度學習
英文關鍵詞: landslide, remote sensing and geographic information systems, satellite imagery, deep learning
研究方法: 主題分析
DOI URL: http://doi.org/10.6345/NTNU202301337
論文種類: 學術論文
相關次數: 點閱:121下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 崩塌災害對於居民造成財產和生命的威脅,同時也對下游水庫、河道輸砂和農業等方面造成影響。因此,若能快速且準確地掌握崩塌位置及其影響範圍,對於執行正確的減災策略和後續的整治工作至關重要。本研究使用深度學習方法對谷關水庫集水區進行崩塌判釋,並比較了不同輸入資料的模型表現差異,同時比較了深度學習方法與支持向量機的精度差異。
    研究結果顯示,深度學習方法進行崩塌判釋係具可行性,本研究使用衛星影像光譜值作為模型輸入資料,且加入不同崩塌影響因子,深度學習模型在測試集之F1-score介於0.75至0.81,精確率介於0.73至0.80,召回率介於0.77至0.85,整體表現良好。其中,當輸入資料加入平面曲率因子階段為最適選,F1-score為0.80,精確率為0.75,召回率為0.85,可成功判釋出85%衛星影像中崩塌類別。本研究亦比較深度學習方法和支持向量機模型表現。研究結果顯示,深度學習模型表現皆優於支持向量機模型。其中,於深度學習模型中加入平面曲率因子階段表現為最佳,F1-score為0.75,精確率為0.76,召回率為0.74,並於研究中發現深度學習模型判釋出的像素雜異點較少,不需額外處理雜異點問題,係使用深度學習模型優勢之一。

    Landslides pose threats to residents' lives and properties, as well as affecting downstream reservoirs, river sediment transport, and agriculture. Therefore, the ability to quickly and accurately identify the locations and extent of landslides is crucial for implementing effective disaster reduction strategies and subsequent recovery efforts. In this study, a deep learning approach was employed to interpret landslides in the Guanguan Reservoir watershed. The performance differences of models with various input data were compared, along with a comparison between the accuracy of deep learning and support vector machine (SVM) methods.
    The research findings demonstrate the feasibility of using deep learning for collapse interpretation. Spectral values from satellite images were used as input data for the model, along with various collapse influencing factors. The deep learning model achieved F1-scores ranging from 0.75 to 0.81, precision ranging from 0.73 to 0.80, and recall ranging from 0.77 to 0.85 on the test set, indicating overall good performance. Notably, the inclusion of the planar curvature factor as input data resulted in optimal performance, with an F1-score of 0.80, precision of 0.75, and recall of 0.85, successfully detecting 85% of landslide instances in satellite images.
    Furthermore, a comparison was made between the performance of the deep learning and SVM models. The results showed that the deep learning models outperformed the SVM models. Particularly, the model that incorporated the planar curvature factor demonstrated the best performance, with an F1-score of 0.75, precision of 0.76, and recall of 0.74. The study also revealed that the deep learning model produced fewer pixel anomalies, eliminating the need for additional anomaly handling. This underscores one of the advantages of using deep learning models.

    第一章 前言 1 第一節 研究動機 1 第二節 研究目的 3 第三節 研究限制 3 第二章 文獻回顧 4 第一節 崩塌影響因子 4 第二節 衛星影像分類模式 6 (一) 影像自動化分類 6 (二) 支持向量機(Support Vector Machine, SVM) 8 (三) 深度學習方法 11 第三節 小結 16 第三章 研究方法 18 第一節 研究區域及研究資料 18 (一) 研究區域 18 (二) 研究資料 19 第二節 研究設計 21 (一) 研究流程 21 (二) 數據前處理 22 (三) 模型參數設定 36 (四) 精度評估 39 第四章 研究結果 40 第一節 崩塌影響因子邏輯回歸 40 第二節 深度學習模型 42 (一) 深度學習模型表現 42 (二) 小結 49 第三節 模型適配性探討 50 (一) 支持向量機 51 (二) 深度學習模型 52 第五章 結論與建議 54 第一節 研究成果 54 (一) 深度學習方法於崩塌判釋之可行性 54 (二) 崩塌影響因子 54 (三) 深度學習與機器學習模型之比較 54 第二節 後續研究建議 55 (一) 資料品質提升 55 (二) 模型架構延伸 55 第六章 參考文獻 56

    呂明倫. (2015). 物件式影像分析技術應用於土地覆蓋分類之研究. 台灣生物多樣性研究, 17(4), 307-320.
    林穎東, 張國楨, & 楊啟見. (2018). 利用物件式導向進行崩塌地種類判釋, 復育追蹤—以高雄市寶來地區為例. Journal of Chinese Soil and Water Conservation, 49(2), 98-109.
    范慶龍. (2021). 監督式機器學習於土地覆蓋分類效益之研究. Journal of Taiwan Land Research, 24(1), 67-94.
    張石角. (1987). 山坡地潛在危險之預測及其在環境影郡評估之應用.
    潘國樑. (2006).遙測學大綱:遙測概念、原理與影像判釋技術,科技圖書.
    Abburu, S., & Golla, S. B. (2015). Satellite image classification methods and techniques: A review. International journal of computer applications, 119(8).
    Abdi, A. M. (2020). Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience & Remote Sensing, 57(1), 1-20.
    Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., ... & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data, 8(1), 1-74.
    Argyriou, A.V.; Polykretis,C.; Teeuw, R.M.; Papadopoulos, N. (2022).Geoinformatic Analysis of RainfallTriggered Landslides in Crete(Greece) Based on Spatial Detection and Hazard Mapping. Sustainability, 14, 3956.
    Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.
    Ben-Hur, A., & Weston, J. (2010). A user’s guide to support vector machines. Data mining techniques for the life sciences, 223-239.
    Bhavsar, H., & Panchal, M. H. (2012). A review on support vector machine for data classification. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 1(10), 185-189.
    Bui, D. T., Tsangaratos, P., Nguyen, V. T., Van Liem, N., & Trinh, P. T. (2020). Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena, 188, 104426.
    Casado-García, Á., Domínguez, C., García-Domínguez, M., Heras, J., Inés, A., Mata, E., & Pascual, V. (2019). CLoDSA: a tool for augmentation in classification, localization, detection, semantic segmentation and instance segmentation tasks. BMC bioinformatics, 20(1), 1-14.
    Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering geology, 64(1), 65-87.
    Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14(1), 5-16.
    Intrieri, E., & Gigli, G. (2016). Landslide forecasting and factors influencing predictability. Natural Hazards and Earth System Sciences, 16(12), 2501-2510.
    Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective (No. Ed. 2). Prentice-Hall Inc..
    Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., & Mansor, S. (2018). Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk, 9(1), 49-69.
    Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425-439.
    Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems, 1097-1105.
    Larsen, M. C. (2008). Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies. Advances in Geosciences, 14, 147-153.
    LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.
    LeCun, Y. (1989). Generalization and network design strategies. Connectionism in perspective, 19(143-155), 18.
    Li, B., Gao, Y., Yin, Y., Wan, J., He, K., Wu, W., & Zhang, H. (2022). Rainstorm-induced large-scale landslides in Northeastern Chongqing, China, August 31 to September 2, 2014. Bulletin of Engineering Geology and the Environment, 81(7), 1-15.
    Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.
    Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition ,3431-3440.
    Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9, 381-386.
    Metternicht, G., Hurni, L., & Gogu, R. (2005). Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote sensing of Environment, 98(2-3), 284-303.
    Mondal, A., Kundu, S., Chandniha, S. K., Shukla, R., & Mishra, P. K. (2012). Comparison of support vector machine and maximum likelihood classification technique using satellite imagery. International Journal of Remote Sensing and GIS, 1(2), 116-123.
    Pan, Z., Xu, J., Guo, Y., Hu, Y., & Wang, G. (2020). Deep learning segmentation and classification for urban village using a worldview satellite image based on U-net. Remote Sensing, 12(10), 1574.
    Pham, B. T., Tien Bui, D., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2017). Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 128(1), 255-273.
    Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349-369.
    Pourghasemi, H. R., & Rahmati, O. (2018). Prediction of the landslide susceptibility: Which algorithm, which precision?. Catena, 162, 177-192.
    Raja, N. B., Çiçek, I., Türkoğlu, N., Aydin, O., & Kawasaki, A. (2017). Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Natural Hazards, 85(3), 1323-1346.
    Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
    Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325.
    Sun, X., Chen, J., Bao, Y., Han, X., Zhan, J., & Peng, W. (2018). Landslide susceptibility mapping using logistic regression analysis along the Jinsha river and its tributaries close to Derong and Deqin County, southwestern China. ISPRS International Journal of Geo-Information, 7(11), 438.
    Tsai, Y. M., Chang, K. C., Chen, C. K., & Chou, H. C. (2019). An Application of Deep Learning Image Classification on Landslide Automated Detection with FORMOSAT-2 Satellite Imagery. 地理研究, (71), 67-78.
    Yang, C., Everitt, J. H., & Murden, D. (2011). Evaluating high resolution SPOT 5 satellite imagery for crop identification. Computers and Electronics in Agriculture, 75(2), 347-354.
    Yang, X., Liu, R., Yang, M., Chen, J., Liu, T., Yang, Y., ... & Wang, Y. (2021). Incorporating landslide spatial information and correlated features among conditioning factors for landslide susceptibility mapping. Remote Sensing, 13(11), 2166.
    Yesilnacar, E., & Topal, T. A. M. E. R. (2005). Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3-4), 251-266.
    Yi, Y., Zhang, Z., Zhang, W., Jia, H., & Zhang, J. (2020). Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. Catena, 195, 104851.
    Zhong, C., Liu, Y., Gao, P., Chen, W., Li, H., Hou, Y., ... & Ma, H. (2020). Landslide mapping with remote sensing: challenges and opportunities. International Journal of Remote Sensing, 41(4), 1555-1581.

    下載圖示
    QR CODE