簡易檢索 / 詳目顯示

研究生: 劉箐茹
Liu, Ging-Rue
論文名稱: 新興光電技術的剖析與智權佈局:聚焦在電子束蒸鍍製作異質接面結構太陽能電池技術、紅外線感測技術
A study with Analysis of Emerging Photoelectric technology and patent layout: Focus on HIT(Heterojunction with Intrinsic Thin Layer)Solar Cell with Electron Beam Vapor Deposition Method, Infrared Sensor Technology
指導教授: 李敏鴻
Lee, Min-Hung
口試委員: 張書通
Chang, Shu-Tong
王立民
Wang, Li-Min
廖書賢
Liao, Shu-Hsien
謝振傑
Chieh, Jen-Jie
李敏鴻
Lee, Min-Hung
口試日期: 2021/07/13
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 188
中文關鍵詞: 具本質薄膜層之異質接面太陽電池電子束蒸鍍紅外線光感測器三維光達大氣遙測光達
英文關鍵詞: heterogeneous interface solar cell with intrinsic thin film layer (HIT), electron beam vapor deposition, infrared light sensor, 3D LiDAR, gas mapping LiDAR
研究方法: 調查研究
DOI URL: http://doi.org/10.6345/NTNU202101455
論文種類: 學術論文
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是在研究新興光電技術應用中二種關鍵光電元件及其相關專利之智權分布概況。這兩種光電元件,一為太陽能電池,另一為紅外線光感測器。首先,我們所研究的太陽能電池是以具本質薄膜層之異質接面太陽電池(Heterojunction with Intrinsic Thin layer,簡稱HIT)為主題,我們採用電子束蒸鍍機製作新型之異質接面矽基太陽能電池。研究結果發現在切割損傷去除蝕刻流程和450°C形成氣體退火之製程後,可有效的改善短路電流及開路電壓。相較於傳統的PECVD設備,可降低製程設備成本。基於上述之優點,將該製程技術進一步來申請專利,並透過專利申請之實務過程中了解該製程技術的可專利性。目前已取得相關專利包含中華民國新型專利、中華民國發明專利及日本發明專利共三篇。再來,我們針對紅外線光感測器之應用來做介紹,分別以三維光達(3D LiDAR)及大氣遙測光達(Gas mapping LiDAR)來進行說明。最後,我們以類似專利佈局的觀點來研究此兩種光電元件的全球專利申請狀況。從全球專利檢索發現,HIT太陽電池的專利申請以發明專利為最主要申請類型,佔全球申請量之89%,申請國家以中國大陸為主要。IPC技術分類可以發現,技術顯著集中在H01L類上,大部分的技術歸屬在H01L31/00上。關於三維光達(3D LiDAR)技術方面,有相當大的比重是通過發明專利進行保護,全球統計發明專利佔所有專利比重的95.8%。中國大陸是最主要的申請國。大氣遙測光達(Gas mapping LiDAR)方面,發明專利佔所有專利比重的83%,全球大氣遙測光達專利以申請人排名來看,在排名前十五的專利申請人中有,6個來自中國大陸、5個來自美國,2個來自德國,韓國和沙烏地阿拉伯各1。台灣有合作參與共計有2件,均歸屬於來自美國的專利。依據2020年版的IPC專利分類,與大氣遙測光達(Gas mapping LiDAR)最相關的技術前十位中有7項專利歸類在G類,並以G01、G05與G06等類別的專利數量為最多。

    This paper focuses on two key optoelectronic components, namely solar cells and infrared light sensors, in emerging optoelectronic technology applications and the intellectual property rights allocated to them. First, we study the heterojunction with intrinsic thin layer (HIT). We then use an electron beam evaporation machine to produce a new type of heterojunction silicon-based solar cell.The etching process for cutting damage removal and the gas annealing process at 450°C are found to improve short circuit current and open circuit voltage.Moreover, the process equipment cost can be reduced compared to the cost when conventional PECVD equipment is used. Based on the above-mentioned advantages, the process technology was patented; the patentability of the process technology was determined through the practical process of patent application.Currently, we have obtained three patents: the Republic of China (R.O.C.) Utility Model Patent , the Republic of China (R.O.C.) Invention Patent, and the Japanese Invention Patent.We then introduce the applications of infrared light sensors and illustrate them with 3D LiDAR and gas mapping LiDAR.Finally,we examine the global patent application status of these two optoelectronic components from a similar patent landscape perspective.From the global patent search, it can be found that patent applications for HIT solar cells are mainly for “invention patents,” accounting for 89% of the global applications. Among the main countries where applications were received was Mainland China.According to the IPC technology classification, the technology is significantly concentrated in the H01L category, with the majority of the technology attributed to H01L31/00.A significant proportion of 3D LiDAR technology is protected by patents for inventions.Globally, patents for inventions account for 95.8% of all patents.Mainland China is the most important country for receiving applications.In terms of the number of patents, the number of inventions accounted for 83% of the total number of patents for gas mapping LiDAR. In terms of the global ranking of the applicants of the patents for gas mapping LiDAR, among the top 15 patent applicants, six were from Mainland China, five from the United States, two from Germany, one from Korea, and one from Saudi Arabia.There were two patent applications in which Taiwan collaborated; both of them were attributed to patents from the United States.According to the 2020 version of the IPC patent classification, among the top ten technologies most relevant to gas mapping LiDAR, seven patents are classified in category G, with the largest number of patents in categories G01, G05, and G06.

    Publication……………………………………………………………………………..i 期刊論文……………………………………………………………………...........……i 個人專利…………………………………………………………………..........…...….i 中文摘要…………………………………………………………………………....……ii Abstract…………………………………………………………………………......….iv 謝辭……………………………………………………………………………….......…..vi 第一章、新興光電元件技術與專利簡介………………………….………...1 1-1 研究動機介紹........................................................................................1 1-2 太陽能電池基本原理...........................................................................4 1-3 HIT太陽能電池......................................................................................9 1-4 電子束蒸鍍製作HIT太陽能電池與專利申請 .................................13 1-5 光達技術介紹 .......................................................................................14 1-6 新興光電元件之智權概述………………………………….………....…….15 第二章、新型異質接面太陽電池之製作與量測….................................20 2-1 HIT太陽電池設計原理與特性.............................................................22 2-2 傳統的異質接面與新型態異質接面比較..........................................23 2-3 新型HIT異太陽電池之製作與量測....................................................28 2-3-1 研究簡介…………………………………………………..…....................….28 2-3-2 新型HIT實驗製程…………………………………….................…..….….30 2-3-3 新型HIT實驗設備說明……………………..……….……...............….…32 2-3-4 新型HIT之效能分析與討論……………………….…..........….…….….34 2-3-5 研究小結…………………………………………………......................….….37 第三章、HIT太陽電池之專利探討………………………………….....….…….39 3-1 專利分析簡介...........................................................................................39 3-2 專利說明書撰寫前之專利檢索............................................................39 3-3 檢索結論....................................................................................................47 3-4 專利架構及說明書之撰寫......................................................................48 3-5 HIT太陽電池專利申請說明書介紹.......................................................52 3-6 HIT solar cell之專利分析與佈局..........................................................53 第四章、紅外線感測產線新興技術介紹……………….…………....….………59 4-1 紅外線感測產線應用簡介........................................................................59 4-2 感測器...........................................................................................................61 4-3 紅外線感測器..............................................................................................62 4-4 光學感測器應用於3D LiDAR..................................................................65 4-5 3DLiDAR感測器介紹................................................................................67 4-6 光學感測器應用於大氣遙測光達 ..........................................................78 第五章、新興光電元件的智權分析…………………………………......….…....84 5-1 HIT solar cell全球技術及智權分析 …………………………….…............84 5-2 友達HIT Solar Cell 技術分析…………….…..........................................100 5-3 3D LIDAR全球技術及智權分析…………………………………......……...108 5-4 大氣遙測光達全球技術及智權分析………………………..…....…...…...126 第六章、結論及未來工作……………………………………………....………...…140 6-1 結論…………………………………………………………………..................…...140 6-2 未來工作 …………………………………………...……….……….....................142 參考資料……………………..…………………………………………………...............145 附錄1……………………………………………...………………………...........…....….160 附錄2………………………………………………………………...……….............……162 附錄3………………………………………………………………...……….................…177 附錄4…………………………………………………………………..……..............….…181 附錄5、本實驗之成本效益………………………………………............….…..…183 附錄6、太陽能發電產業之市場分析……………………………..…….……..…185 附錄參考資料……………………………………………………………...........….….…188

    [1] 徐志偉、楊宗賢、鄭致灝,〈探索光達感測器提昇環周感知能力〉,《電腦與通訊期刊》,108年09月16日。https://ictjournal.itri.org.tw/content/Messagess/contents.aspx?&MmmID=654304432061644411& 55143006&MSID=1036010376166635147
    [2] 沈英、邵昆明、吳靖、黃峰、郭禹澤,〈氣體光學檢測技術及其應用研究進展〉。Opto-Electronic Engineering光電工程, “Optical Gas Detection: Key Technologies and Applications Review,” Shen Ying, Shao Kunming, Wu Jing*, Huang Feng, “Guo Yuze College of Mechanical Engineering and Automation,” Fuzhou University, Fuzhou, Fujian 350116, China Review 2第 47 卷第 4 期,2020年。Publish Date: 25 April 2020http://cn.oejournal.org/oej-data/oee/2020/4/PDF/gdgc-47-4-190280-1.pdf
    [3] 李碩重,〈太陽光電技術與產業發展〉,《The Prospects of Solar Photovoltaic Technology and Industry》,第79期(2007年4月)。http://www.rocga.org.tw/pdf/%E6%AD%B7%E5%B9%B4%E7%93%A6%E6%96%AF%E5%AD%A3%E5%88%8A/%E6%B0%91%E5%9C%8B%2096%E5%B9%B4/79%E6%9C%9F2007%E5%B9%B44%E6%9C%88%E8%99%9F/79%E6%9C%9F2007%E5%B9%B44%E6%9C%88-1%E5%A4%AA%E9%99%BD%E5%85%89%E9%9B%BB%E6%8A%80%E8%A1%93%E8%88%87%E7%94%A2%E6%A5%AD%E7%99%BC%E5%B1%95(%E4%B8%8A).pdf
    [4] 施敏著,《半導體元件物理與製作技術》,新北:高麗圖書有限公司,1999,頁347-348。
    [5] 翁啟航主編,《太陽能電池:原理、元件、材料、製程與檢測技術》,台北:東華書局,2012,頁12-31。
    [6] 陳智宇,《單晶及異質接面太陽能電池試製與模擬》,臺北:國立台灣師範大學光電科技研究所碩士論文,2013。
    [7] 史少飛、吳愛民、張學宇、薑辛,〈HIT太陽能電池的發展概況〉,「大連理工大學材料科學與工程學院材料報導綜數篇」,第25卷第7期,2013,頁130。
    [8] 「太陽能電池技術前瞻分析:HIT技術漸行漸近」,2019年08月22日由未來智庫發表于資訊(報告來源:東吳證券)。https://kknews.cc/news/kl98geq.html.
    [9] A. Kolodziej, “Staebler-Wronski effect in amphous silicon and its alloys.” Opto-Electronics Review. 12(2004). pp.21-32.
    [10] S. DeWolf, A. Descoeudres, Z. C. Holman, and C. Ballif. “High-Efficiency Silicon Heterojunction Solar Cells: A Review.”Green. 2(2012), pp. 7-24.
    [11] A. Kolodziej, “Staebler-Wronski effect in amphous silicon and its alloys.” OPto-Electronics Review 12(2004), pp. 21-32.
    [12] 濱川圭弘,《光電太陽電池設計與應用》,台北:五南圖書出版有限公司,2009,頁61-65。
    [13] M. Tanaka, M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano. Development of New a-Si/c-Si Heterojunction Solar Cells:ACJ-HIT(Artificially Constructed Junction Heterojunction with Intrinsic Thin-Layer). Journal of Applied Physics. 31(1992). pp. 3518-3522.
    [14] M. Taguchi, H. Sakata, Y. Yoshimine, E. Maruyama, Akira Terakawa and Makoto Tanaka, “An approach for the higher efficiency in the HIT cells.” Photovoltaic Specialists Conference (2005). pp. 866-870.
    [15] PV Education.org http://pveducation.org/pvedrom/solar-cell-operation/effect-of-temperature
    [16] M. Taguchi, A. Terakawa, E. Maruyama and M. Tanaka. “Obtaining a Higher Voc in HIT Cells.”Progress in Photovoltaics Research and Applcations 13(2005), pp. 481-488 .
    [17] Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E Maruyama, M. Tanaka. “Twenty-two percent efficiency HIT solar cell.” Solar Energy Materials & Solar Cells 93(2009), pp. 670-673.
    [18] C.-S. Liu, C.-Y. Wu, I.-W. Chen, H.-C. Lee and L.-S. Hong,“High-rate deposition of a-Si:H thin layers for high-performance silicon heterojunction solar cells.” Progress in Photovoltaics: Research and Applcations 21(2012), pp.326-331.
    [19] R. A.Sinton, Tanaya Mankad, Stuart Bowden, and Nicolas Enjalbert, “Evaluating Silicon Blocks and Ingots With Quasi-Steady-State Lifetime Measurements.”19th European Photovoltaic Energy Conference(2004).
    [20] R. Sinton. “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization.”Proceedings of the 25th IEEE PVSC(1996), pp. 457-460.
    [21] Semi.org. http://www.semi.org/cms/groups/public/documents/web_content
    [22] Sally Liu, Zhi-Yu Chen, Shu-Tong Chang, Min-Hung Lee,“Amorphous layers by electron beam evaporator deposition for hetero-junction with intrinsic thin layer solar cells applications.” Int. J. Nanotechnol 13:7(2016), p.485.
    [23] I. Sakata, Mitsuyuki, Yamanaka, H. Kawamnami, “Characterization of hetero-junctions in crystalline-silicon-based solar cells by internal photoemission.”Solar Energy Materials & Solar Cells 93(2009), pp.737-741.
    [24] S-D. Wolf, and M. Kondo, “Nature of doped a-Si-H/c-Si interface recombination.” Journal of Applied Physics 105:103707(2009).
    [25] T. Koida. H. Fujiwara, M. Kondo, “High-mobility hydrogen-doped In203 transparent conductive oxide for a-Si:H/c-Si hetero-junction solar cells.” Solar Energy Materials & Solar Cells. 93(2009). рр. 85l-854.
    [26] H. Fujiwara, T. Kaneko, M. Kondo, “Optimization of interface structures in crystalline silicon hetero-junction solar cells.”Solar Energy Materials & Solar Cells 93(2009), pp.725-728.
    [27] T. Koida H. Fujiwara, and M. Kondo, “Reduction of Optical Loss in Hydrogenated Amorphous Silicon/Crystalline Silicon Hetero-junction Solar Cells by High-Mobility Hydrogen-Doped In2O3 Transparent Conductive Oxide. Appl Phys.” Express. 1(2008), p. 041501.
    [28] H. Sakata, T. Nakai, T. Baba, M. Taguchi, S. Tsuge, K. Uchihashi, and S. Kiyama, “20.7% High efficiency large area (100·5cm2) HITTM cell.” 8th IEEE Photovaltaic Specialists Conference 7(2000), pp. 7-12.
    [29] L. Zhao, C.-L. Zhou, H. -L. Li, H.- W. Diao, W.-J. Wang, “Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation.” Solar Eneryy Materials & Solar Cells 92(2008), pp. 673-681.
    [30] M.Tanaka, M. Taguchi, T. Takahama, T. Sawada, S. Kuroda, T. Matsuyama, S. Tsuda, A. Takeoka, S. Nakano, H. Hanafusa, and Y. Kuwano,“ Development of a New Hetero-junction Structure (ACJ-HIT) and its Application to Polycrystalline Silicon Solar Cells.” Progress In Photovaltaics Research And Applications, 1993, pp. 85-92.
    [31] K-V. Nieuwenhuysen, F. Duerinckx, I Kuzma M-R. Payo G Beaucarne and J. Poortmans,“ Epitaxially grown emitters for thin film crystalline silicon solar cells.”Thin Solid Films 517(2008), pp. 383-384.
    [32] I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, “ 8% Efficient Thin-Film Polycrystalline-Silicon Solar Cells Based on Aluminum-Induced Crystallization and Thermal CVD.” Prog. Photovolt: Res. 15(2007), pp.575-586 .
    [33] T.Sawada, N, Terada, S. Tsuge, T. Baba, T: Takahama, K. Wakisaka, S. Tsuda, and S.Nakano, “ High efficiency a-Si/c-Si hetero-junction solar cell.” Conference Record the First WCPEC (1994), p. 1219.
    [34] 智慧局中華民國專利檢索系統,http://twpat.tipo.gov.tw
    [35] United States Patent and Trademark Office, https://www.uspto.gov/
    [36] European Patent Office, https://www.epo.org/
    [37] https://patents.google.com/
    [38] 〈中華民國專利TW201001729 友達光電股份有限公司〉 (申請日2014/02/05)公告號I517424,台北:經濟部智慧財產局。
    [39] 〈中華民國專利TW201126033特艾希米控公司〉(申請日2010/11/17)公開號201126033,台北:經濟部智慧財產局。
    [40] 〈中華民國專利TW200824003 華映管股份有限公司 CHUNGHWA PICTURE TUBES, LTD〉(申請日2006/11/17)公開號200824003,台北:經濟部智慧財產局。
    [41] 〈中華民國專利TW201421707元晶太陽能科技股份有限公司 TSEC CORPORATION〉(申請日2012/11/28)公開號201421707,台北:經濟部智慧財產局。
    [42] 〈CN103035772 CN103035772A 常州天合光能有限公司〉 (公開日20130410)公開號CN103035772A,中國智財局。
    [43] “US9252316 KOREA INSTITUTE OF ENERGY RESEARCH (KR)” (申請日20150401 )公告號US09252316B2,美國智財局。
    [44] “US20130180578 CRYSTAL SOLAR, INCORPORATED (US)” (申請日20130114)公告號US09257284B2,美國智財局。
    [45] 〈CN102054890 中國科學院半導體研究所INSTITUTE OF SEMICONDUCTORS, CHINESE ACADEMY OF SCIENCES〉 (申請日20101029)公告號 CN102054890B,中國智財局。
    [46] “US9099596 BEDELL STEPHEN W. (US); FOGEL KEITH E. (US); HEKMATSHOAR-TABARI BAHMAN (US); SADANA DEVENDRA K. (US); SHAHIDI GHAVAM G. (US); SHAHRJERDI DAVOOD (US); INTERNATIONAL BUSINESS MACHINES CORPORATION (US) ”(申請日20110729)公開號 US20130025655A1,美國智財局。
    [47] “US9214576 FU JIANMING (US); XU ZHENG (US); HENG JIUNN BENJAMIN (US); YU CHENTAO (US); SOLARCITY CORPORATION (US)” (申請日20110607)公開號 US20110303278A1,美國智財局。
    [48] 〈CN101378115B 比亚迪股份有限公司〉(申請日20070830)公開號CN101378115A,中國智財局。
    [49] 〈CN103560169B 济南晶力新能源科技有限公司〉 (申請日20131025) 公開號CN103560169A,中國智財局。
    [50] 〈US20100300506 SIERRA SOLAR POWER, INC. (US)〉 (申請日20090602)公告號 US09537032B2,美國智財局。
    [51] 〈CN102804392A 国际商业机器公司〉(申請日20100617)公開號CN102804392A,中國智財局
    [52] 陳啟桐,《發明專利申請及說明書撰寫實務:機械、電子、軟體》,頁28-39。
    [53] 魯明德,《解析專利資訊》,頁217-226。
    [54] 〈以專利布局支持新技術產業化〉,智慧財產權月刊第224期,106年8月。
    [55] Shao-Sung Lo, “Technical Analysis of Food & Beverage Industry.” Journal of China University of Science and Technology 41(2010.1), pp.317-318.
    [56] 「2020年疫情籠罩下台灣光電產業業績表現不俗總產值達1兆4208台幣」,光電協進會,2021年4月9。https://www.pida.org.tw/main/article_show/0216,瀏覽日期為2021年4月30日。
    [57] 黃興閎,〈感測器於實車碰撞測試之應用〉,車輛研測資訊,2006年11月,頁8。https://catalog.digitalarchives.tw/item/00/4d/83/2b.html,瀏覽日期為2021年4月30日。
    [58] 謝廣文,〈農業自動化叢書12機電整合〉,頁11-27。
    [59] 「一文看懂常用光學感測器的原理——日間新聞紅外感測器」,2020年11月27日。https://www.daytime.cool/tech/326579.html,瀏覽日期為2021年4月30日。
    [60] Antoni Rogalski, “Review Infrared detectors: status and trends Progress in Quantum Electronics”27 (2003), pp. 59-210; Institute of Applied Physics, Military University of Technology, 49 00-908 Warsaw, 2 Kaliskiego Street, Warsaw 49-00-908, Poland. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.1300&rep=rep1&type=pdf
    [61] 翁于婷,《紅外線光譜(infrared spectroscopy) (一)》,國立臺灣師範大學化學系碩士班,2015/06/27。科學online https://highscope.ch.ntu.edu.tw/wordpress/?p=63871
    [62] 孫華、李揚,〈熱釋電紅外傳感器原理及其應用〉,《内江科技》,2010年第12期,頁116。
    [63] 「雷射位移感測器」,https://www.itsfun.com.tw/雷射位移感測器/wiki.
    [64] 「感測元件目前發展」,雲端科技知識2014年10月28日。https://www.stockfeel.com.tw/,
    [65] 「你知道雷射雷達的原理嗎?」2018年4月11日發布於軍事,https://kknews.cc/military/xqqok69.html,瀏覽日期為2021年4月30日。
    [66] 〈Harald Weber LiDAR感測器測距產品單元主管 瓦爾德基爾希市(德國)SICK AG 公司〉,「SICK AG 白皮書 LiDAR感測器的工作原理和產品系列」,2018年7月。
    [67] 「未來的市場,3D 感測產業介紹」,Source: Yole Développement 責任編輯:邱翊雲(合格證券投資分析人員),2020年11月5日,https://blog.fugle.tw/3d-sensor/,瀏覽日期為2021年5月1日。
    [68] 黃君偉、高英哲,〈雷達和光雷達在軍事和民用領域的應用〉,國家實驗研究院儀器科技研究中心,2019年6月21日。https://case.ntu.edu.tw/blog/?p=34162,瀏覽日期為2021年5月1日。
    [69] 倪簡白,〈探測地球大氣的利器雷射雷達〉,《科學發展》,第392期(2005年8月),頁55-56。
    [70] 「雷射雷達技術及其在自動駕駛領域的應用」,https://inf.news/zhtw/tech/25b6b1bc160604bf51ef72674310370b.html
    [71] 江智偉、達斯、廖煌時、倪簡白,〈3-D Scanning LIDAR〉,《科儀新知》,第31卷第6期(99年6月),頁35。
    [72] 張嘉玲,〈光達技術規格大比拚〉,「新興領域:6月焦點」,2019.6.10。
    [73] 陳舜鴻,〈運用雷射雷達(LiDAR)感測功能提升智慧汽車效能〉,《車輛研測資訊》,第108期(2015年10月)。
    [74] 〈高精度固態雷射雷達在自動駕駛汽車領域的應用〉,《Viocr公司汽車電子》(2021.03),頁81。
    [75] “US15936247 Bridger Photonics, Inc. (US)” (申請日20180326)公告號 US10337859B2,美國智財局。
    [76] Michael J. Thorpe, Aaron Kreitinger, Eric Seger, Nathan Greenfield, Chris Wilson, Pierce Trey, Seth Kreitinger, Steven Gordon, Ryan Schmitt, Pete Roos, “Gas Mapping LiDAR for large-area leak detection and emissions monitoring applications.” Bridger Photonics, Inc. 2310 University Way, Bozeman, MT 59715thorpe@bridgerphotonics.com
    [77] 〈CN1918466B ITT製造企業公司〉(申請日2004年12月17日)公開號 CN1918466A,中國智財局。
    [78] MSA Safety Incorporated, https://nl.msasafety.com/gas-mapping?locale=en.
    [79] “JP6588640B2 エヌイーシー ラボラトリーズ アメリカ インクNEC Laboratories America Inc”(申請日20160920)公開號 JP2018523835A,日本特許聽。
    [80] 未來智庫(2020),〈光伏行業深度研究之異質結電池專題報告〉,https://guangfu.bjx.com.cn/news/20200701/1085127.shtml

    [81] 〈HIT高效電池的前世今生〉,2018 ,https://www.energytrend.cn/knowledge/20181126-28985.html

    [82] 〈什麼是HIT電池,為什麼說HIT電池是光伏電池產業的新風口〉,2020-01-10,原文網址:https://kknews.cc/finance/j2nqkop.html

    [83] 貝哲斯諮詢,〈2020-07-30年或將成為HIT電池的產業化元年〉,https://www.china5e.com/news/news-1096008-1.html

    [84] Gregory M Wilson1, Mowafak Al-Jassim2, Wyatt K Metzger, “The 2020 photovoltaic technologies roadmap.” Journal of Physics D: Applied Physics, Volume 53, Number 49, https://iopscience.iop.org/article/10.1088/1361-6463/ab9c6a

    [85] 陳松裕,〈矽晶太陽電池技術現況與未來展望〉,工業技術研究院,2020年。file:///C:/Users/USER/Downloads/20200907093959.pdf

    [86] ITRPV – VDMA, ITRPV 11th edition, April 2020 report presentation and key findings, https://itrpv.vdma.org/documents/27094228/29066965/ITRPV020200Presentation/eb855894-bbfd- e9fa-b368-592c186986b6

    [87] 未來智庫,〈光伏行業深度研究之異質結電池專題報告〉,2020年。https://guangfu.bjx.com.cn/news/20200701/1085127.shtml

    [88] 實驗室最高轉換效率為 26.63%。松下收購三洋 HIT 電池產線後創下 24.7%的 HIT 轉換效率記錄,日本 Kaneka 公司通過在 HIT 電池中結合 IBC 電池結構,以 26.63%的效率水準創造了商用晶體矽太陽能電池的最高轉換效率。但各家電池廠商的平均量產轉換效率普遍在23%~24%左右,其中松下量產轉換效率為24.70%。

    [89] Daisy Chuang,〈不敵中國低價競爭,日本松下退出太陽能製造市場〉,2021年。https://technews.tw/2021/02/01/panasonic-solar/

    [90] PCT – The International Patent System, https://www.wipo.int/pct/en/

    [91] 友達領軍突破台灣缺單晶的重圍 太陽能單晶長晶近期啓動,北極星太陽能光伏網,2021,https://ppfocus.com/0/sc58c4373.html

    [92] 單晶vs多晶,長期博弈首現拐點! 北極星太陽能光伏網,2020,https://ppfocus.com/0/scf3c7277.html

    [93] 最新數據顯示,普通多晶組件的價格在1.7—1.8元/瓦左右,普通單晶組件價格在1.9元/瓦左右,而高效單晶在2.15元/瓦左右。

    [94] 單晶vs多晶,長期博弈首現拐點! 北極星太陽能光伏網,2020,https://ppfocus.com/0/scf3c7277.html

    [95] N型矽晶太陽電池由於其高載子壽命和無光致衰減等天然優勢,具有更大的效率提升空間和穩定性,成為產業關注和研究的重點。

    [96] 友達領軍突破台灣缺單晶的重圍 太陽能單晶長晶近期啓動,北極星太陽能光伏網,2021,https://ppfocus.com/0/sc58c4373.html

    [97] 張瑞益(2021) 聯合再生與台大聯手研發 太陽能電池材料製程突破,經濟日報https://money.udn.com/money/story/5612/5313431?from=edn_hotlist_storybottom

    [98] 友達官方網站https://www.auo.com/zh-TW/Solar/index

    [99] AUO,〈創新是公司邁向永續卓越的關鍵能力〉,https://csr.auo.com/tw/environment/product/patent

    [100] 「2020 聯合再生台灣模組出貨第一名」,〈聯合再生能源新聞稿〉,2021年,https://www.urecorp.com/upload/news/20210224173404_news_0.pdf

    [101] Sharon Chen,「2020台灣市場模組與逆變器出貨排名出爐: SolarEdge首次進入前五大」,2021年。Info Link,https://www.infolink-group.com/zh-tw/solar/feature-rankings/2020-Taiwan-module-inverter-shipment-rankings

    [102] United Renewable Energy ®, https://u-renew.com/about-ure/#leadership

    [103] 「2020 最新自動駕駛技術報告出爐!以特斯拉、Volvo 為例,全面涵蓋智駕技術」,〈科技新報〉,2020 年,https://technews.tw/2020/03/27/wevolver-2020-autonomous-vehicle-technology-report/

    [104] Anne-Françoise Pelé,〈深度感測技術實現3D機器視覺〉,EE Times,2021年。https://www.eettaiwan.com/20210720nt31-depth-sensing-takes-machine-vision-into-another-dimension/

    [105] 吳旻蓁,「特斯拉投靠LiDAR陣營」,〈聯合新聞網〉,2021年。https://udn.com/news/story/6851/5505552

    [106] LiDAR-MoneyDJ理財網,http://newjust.masterlink.com.tw/HotProduct/HTML/Basic.xdjhtm?A=PA341-1.html

    [107] Yole Développement, “LiDAR is facing headwinds: is diversification the solution?”,2020. http://www.yole.fr/LiDAR_Market_Update_Livox_LiDAR.aspx

    [108] Anne-Françoise Pelé,〈深度感測技術實現3D機器視覺〉,EE Times,2021年https://www.eettaiwan.com/20210720nt31-depth-sensing-takes-machine-vision-into-another-dimension/

    [109] Junko Yoshida,「競爭熱度升高光達市場百家爭鳴」,EE Times,2021年。https://www.eettaiwan.com/20210504nt31-lidar-sweepstakes-draws-15-rfqs-but-no-frontrunner/

    [110] 戴海茜,〈2023年全球光達市場規模將逾50億美元,光達及雷達技術互補為趨勢〉,2020年,https://tw.stock.yahoo.com/news/%E7%94%A2%E6%A5%AD-2023%E5%B9%B4%E5%85%A8%E7%90%83%E5%85%89%E9%81%94%E5%B8%82%E5%A0%B4%E8%A6%8F%E6%A8%A1%E5%B0%87%E9%80%BE50%E5%84%84%E7%BE%8E%E5%85%83-%E5%85%89%E9%81%94%E5%8F%8A%E9%9B%B7%E9%81%94%E6%8A%80%E8%A1%93%E4%BA%92%E8%A3%9C%E7%82%BA%E8%B6%A8%E5%8B%A2-083335899.html

    [111] Anne-Françoise Pelé,〈LiDAR市場前景可期 分析師:謹慎為上策〉,EE Times,2020年,https://www.edntaiwan.com/20201224nt51-lidar-market-promising-but-caution-needed/

    [112] AI車庫,〈汽車雷射雷達產業報告(2019-2020年)〉,https://zhuanlan.zhihu.com/p/165519572

    [113] 瘋先生,〈iPhone LiDAR 到底可以做什麼?這5款 AR 應用一定要玩〉,2020年,https://mrmad.com.tw/iphone-lidar

    [114] Bridger Photonics, Inc. Final Report: Drone-Based Gas Mapping LiDAR for Leak Mitigatio, U.S. Environmental Protection Agency, https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract_id/10907/report/F

    [115] USPTO, https://tmsearch.uspto.gov/bin/showfield?f=doc&state=4809:42w05g.2.1

    [116] 陳韡鼐,〈淺介雷射大氣環境遙測〉,《中央研究院週報》,第1650期,https://newsletter.sinica.edu.tw/reviews/knowledge/1650.pdf

    [117] 〈環境雷射遙測〉,《中文百科》,https://www.newton.com.tw/wiki/%E7%92%B0%E5%A2%83%E9%9B%B7%E5%B0%84%E9%81%99%E6%B8%AC

    [118] 〈中國即將發射全球首顆主動雷射雷達二氧化碳探測衛星〉,《新華網》,2021,http://www.xinhuanet.com/2021-03/02/c_1127157873.htm

    [119] Preeti Wadhwani, Smriti Loomba(2019), LiDAR in Mapping Market Size By Platform (Drones [Fixed Wing Drones, Single Rotor Drones, Multi Rotor Drones], Terrestrial [Stationary, Mobile], Airborne, Handheld and Backpack), By Component (Hardware, Software), By Application (Corridor Mapping, Construction & Surveying, Agriculture & Forestry, Mining & Quarrying, Education, Environmental,Transport, Emergency Services) Industry Outlook, Regional Analysis, Application Development, Competitive Landscape & Forecast, 2020 – 2026, Global Market insights, https://www.gminsights.com/industry-analysis/lidar-in-mapping-market

    [120] Vinisha Joshi (2020), Top 4 trends likely to escalate demand for LiDAR in Mapping Solutions worldwide, Geospatial World, https://www.geospatialworld.net/blogs/top-4-trends-likely-to-escalate-demand-for-lidar-in-mapping-solutions-worldwide/

    [121] Markets and Markets (2020), LiDAR Drone Market by Component (LiDAR Lasers, UAV Cameras), Type (Rotary-wing LiDAR Drones, Fixed-wing LiDAR Drones), Range (Short, Medium, Long), Application (Corridor Mapping, Archeology, Environment), Region-Global Forecast to 2025, https://www.marketsandmarkets.com/Market-Reports/lidar-drone-market-128835365.html

    [122] Markets and Markets (2020), Leak Detection Market for Oil & Gas with COVID-19 Impact by Technology (Acoustic, E-RTTM, Fiber Optic, Mass/Volume Balance, Laser Absorption and LiDAR, Thermal Imaging), Medium (Oil and Condensate, Natural Gas), and Region-Global Forecast to 2025, https://www.marketsandmarkets.com/Market-Reports/oil-gas-leak-detection-market-33989203.html

    [123] Lidar in Mapping Market to Cross $4 Billion by 2026, 2020, https://www.geoweeknews.com/blogs/lidar-in-mapping-market-to-cross-4-billion-by-2026

    [124] Global Industry Analysts, Inc.石油、天然氣洩漏偵測的全球市場,2021年。https://www.giichinese.com.tw/report/go908011-leak-detection-market-oil-gas.html

    [125] 魏志豪,「高成本轉嫁有難度 太陽能模組廠成產業夾心餅」,〈鉅亨網〉,2021/05/09。https://news.cnyes.com/news/id/4641074
    [126] 「布局3D感測市場2017-2020年成長率209%」,〈科技產業資訊室〉,2017年9月12日。https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=13762&source=post_page
    [127] “US09736459B2 PrimeSense Ltd. (IL);APPLE INC. (US)” (申請日20130213)公告號US09736459B2,美國智財局。
    [128] 「蘋果公司新專利:涵蓋LiDAR探測和擋風玻璃上顯示信息」,科技產業資訊室發表於2018年4月11日https://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=14343
    [129] “US 20180081058 Apple Inc. (US)” (申請日20170919)公開號US20180081058A1,美國智財局。
    [130] “US 20180089899 Apple Inc. (US)”(申請日20170922)公告號US10922886B2,美國智財局。

    無法下載圖示 本全文未授權公開
    QR CODE