簡易檢索 / 詳目顯示

研究生: 謝沅峰
Hsieh, Yuan-Feng
論文名稱: 探討類軸子粒子對於暗光子的影響
Study of the constraints of dark photon with ALP
指導教授: 陳傳仁
Chen, Chuan-Ren
口試委員: 陳傳仁
Chen, Chuan-Ren
李沃龍
Lee, Wo-Lung
阮自強
Yuan, Tzu-Chiang
口試日期: 2024/06/27
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 26
中文關鍵詞: 暗光子類軸子粒子超越標準模型物理
英文關鍵詞: Dark photon, Axion-like particle, Physics beyond Standard Model
研究方法: 現象學
DOI URL: http://doi.org/10.6345/NTNU202401518
論文種類: 學術論文
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在超越標準模型物理中,暗類物質是門有趣的領域。它可能會與標準模型中的粒子產生交互作用,因此我們需要一個媒介來解釋它們之間的交互作用,暗光子則是很好的人選。我們假設暗光子能夠與標準模型中的費米子產生交互作用,且能解釋缈子$g-2$異常。在與標準模型的粒子交互作用中,我們將著重於討論它的衰變。如暗光子之質量大於兩倍電子質量,則暗光子可衰變為輕子對,甚至是更重的強子。許多實驗利用暗光子衰變的特性來搜尋暗光子,並對於暗光子的質量以及其與標準模型粒子的耦合強度設定限制。其中包括對撞機及粒子束陷落實驗,像是BaBar、NA48/2、LHCb、NA64、E137、Orsay、$u$-cal、CHARM等......。除了這些實驗,電子$g-2$同樣對於暗光子設定了限制,$g-2$所限制的區域較無其他實驗限制區域重疊。若是想以暗光子解釋缈子$g-2$異常,其所適用之區域被三個對撞機實驗的限制區域覆蓋。在這篇論文中,我們將會引入另一種假想粒子:類軸子粒子。類軸子粒子是種非常輕的粒子,並有可能與暗光子產生交互作用。暗光子可能會衰變為一個類軸子粒子及一個光子。在類軸子粒子的影響下,原先由實驗所得到的限制區域將會有所改變。若是類軸子粒子的影響足夠強烈,則缈子$g-2$的適用區域將會與其餘實驗的限制區域分開,並能在暗光子質量超過一百億電子伏特時利用暗光子來解釋缈子$g-2$異常。

    Dark sector is an interesting topic in physics beyond Standard Model. It is possible that dark sector may interact with Standard Model (SM) particle by $U(1)$ kinetic-mixing. Dark photon is a theoretical particle that corresponding to the interaction between dark sector and SM particle. This particle not only can connect dark sector and SM particle, but also may explain muon $g-2$ anomaly. For massive dark photon, it can decay to SM fermions if its mass heavier than two electron mass. Lots of experiments set the constraints of kinetic-mixing parameter $ arepsilon$, such as colliders and beam dump experiments. Collider experiments include BaBar, NA48/2 and LHCb. Beam dump experiments include NA64, E137, Orsay, $
    u$-cal, CHARM, etc. $g-2$ also set the constraints of $ arepsilon$. Electron $g-2$ covers $ arepsilon geq 10^{-4}$ region in $m_{gamma'}- arepsilon$ space, where $m_{gamma'}$ is dark photon mass. The favorite region of muon $g-2$ is set at $ arepsilon = 10^{-3}-10^{-2}$, this region is excluded by NA48/2, BaBar and LHCb. In this thesis, we will introduce a light particle, axion-like particle (ALP) $a$, to interact with dark photon. We assume $m_{gamma'} >> m_{a}$, $m_{a}$ is ALP mass, and dark photon can decay to one ALP and one SM photon with coupling $g_{agammagamma'}$. In this assumption, the constraints of dark photon should be changed. With impact of ALP, constraints from collider and beam dump experiments will shift upward and muon $g-2$ favorite region will separate from others constraints. For $g_{agammagamma'} approx 1~m{GeV}^{-1}$, we can use dark photon to explain muon $g-2$ anomaly at $m_{gamma'} >10~m{GeV}$ region.

    Acknowledgements i 摘要 iii Abstract v ListofFigures vii ListofTables ix 1 Introduction 1 2 Model 3 2.1 DarkPhoton 3 2.2 Axion-LikeParticle 4 2.3 Branchratio 5 3 Experiment 9 3.1 Collider 9 3.2 BeamDump 11 4 NewLimits 13 4.1 EfficiencyofCollider 14 4.2 EfficiencyofBeamDump 14 4.3 Result 15 5 Summary 19 References 21 A MethodofGetting New Limits 25

    [1] Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1–29, 2012.
    [2] L. B. Okun. LIMITS OF ELECTRODYNAMICS: PARAPHOTONS? Sov. Phys. JETP, 56:502, 1982.
    [3] Peter Galison and Aneesh Manohar. TWO Z’s OR NOT TWO Z’s? Phys. Lett. B, 136:279–283, 1984.
    [4] BobHoldom. TwoU(1)’sandEpsilonChargeShifts. Phys. Lett. B,166: 196-198, 1986.
    [5] Maxim Pospelov, Adam Ritz, and Mikhail Voloshin. Secluded wimp dark matter. Physics Letters B, 662(1):53–61, April 2008.
    [6] Nima Arkani-Hamed, Douglas P. Finkbeiner, Tracy R. Slatyer, and Neal Weiner. A theory of dark matter. Physical Review D, 79(1), January 2009.
    [7] James D. Bjorken, Rouven Essig, Philip Schuster, and Natalia Toro. New fixed-target experiments to search for dark gauge forces. Physical Review D, 80(7), October 2009.
    [8] Kunio Kaneta, Hye-Sung Lee, and Seokhoon Yun. Portal Connecting Dark Photons and Axions. Phys. Rev. Lett., 118(10):101802, 2017.
    [9] Marco Fabbrichesi, Emidio Gabrielli, and Gaia Lanfranchi. The Physics of the Dark Photon: A Primer. Springer International Publishing, 2021.
    [10] R. D. Peccei and Helen R. Quinn. CP Conservation in the Presence of Instantons. Phys. Rev. Lett., 38:1440–1443, 1977.
    [11] Maxim Pospelov. Secluded U(1) below the weak scale. Phys. Rev. D, 80:095002, 2009.
    [12] J. P. Lees et al. Search for a Dark Photon in e+e− Collisions at BaBar. Phys. Rev. Lett., 113(20):201801, 2014.
    [13] J. R. Batley et al. Search for the dark photon in π0 decays. Phys. Lett. B, 746:178–185, 2015.
    [14] Roel Aaij et al. Search for Dark Photons Produced in 13 TeV pp Collisions. Phys. Rev. Lett., 120(6):061801, 2018.
    [15] Sarah Andreas, Carsten Niebuhr, and Andreas Ringwald. New limits on hidden photons from past electron beam dumps. Physical Review D, 86(9), November 2012.
    [16] D. Banerjee et al. Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+e− pairs. Phys. Rev. D, 101(7):071101, 2020.
    [17] Johannes Blümlein and Jürgen Brunner. New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data. Phys. Lett. B, 731:320–326, 2014.
    [18] S. N. Gninenko. Stringent limits on the π0 → γX,X → e+e− decay from neutrino experiments and constraints on new light gauge bosons. Phys. Rev. D, 85:055027, 2012.
    [19] Arushi Bodas, Rupert Coy, and Simon J. D. King. Solving the electron and muon g−2 anomalies in Z′ models. Eur. Phys. J. C, 81(12):1065, 2021.
    [20] J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu, L. W.Mo,T.A.Nunamaker,andP.Rassmann. SearchforNeutralMetastable Penetrating Particles Produced in the SLAC Beam Dump. Phys. Rev. D, 38:3375, 1988.
    [21] E. M. Riordan et al. A Search for Short Lived Axions in an Electron Beam DumpExperiment. Phys. Rev. Lett., 59:755, 1987.
    [22] A. Bross, M. Crisler, S. Pordes, J. Volk, S. Errede, and J. Wrbanek. Search for short-lived particles produced in an electron beam dump. Phys. Rev. Lett., 67:2942–2945, Nov 1991.
    [23] A. Konaka et al. Search for Neutral Particles in Electron Beam Dump Experiment. Phys. Rev. Lett., 57:659, 1986.
    [24] M. Davier and H. Nguyen Ngoc. An unambiguous search for a light higgs boson. Physics Letters B, 229(1):150–155, 1989.
    [25] J. Blumlein et al. Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e+ e- and mu+ mu- pair production in a proton-iron beam dump experiment. Int. J. Mod. Phys. A, 7:3835–3850, 1992.
    [26] P. Astier et al. Search for heavy neutrinos mixing with tau neutrinos. Phys. Lett. B, 506:27–38, 2001.
    [27] F. Bergsma et al. Search for Axion Like Particle Production in 400-GeV Proton- Copper Interactions. Phys. Lett. B, 157:458–462, 1985.
    [28] G. Bernardi et al. Search for Neutrino Decay. Phys. Lett. B, 166:479–483, 1986.
    [29] Philip Ilten, Yotam Soreq, Mike Williams, and Wei Xue. Serendipity in dark photon searches. Journal of High Energy Physics, 2018(6), June 2018.
    [30] Patrick deNiverville, Hye-Sung Lee, and Min-Seok Seo. Implications of the dark axion portal for the muon g−2 , B factories, fixed target neutrino experiments, and beam dumps. Phys. Rev. D, 98(11):115011, 2018.

    下載圖示
    QR CODE