簡易檢索 / 詳目顯示

研究生: 吳婉溱
Wu, Wan-Jhen
論文名稱: 1-甲基-4-苯基-1,2,3,6-四氫吡啶引發臺灣葉鼻蝠腦組織的神經損傷
MPTP-induced neural damage in the brain of an echolocation bat, Hipposideros terasensis
指導教授: 吳忠信
Wu, Chung-Hsin
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 48
中文關鍵詞: 帕金森氏症1-甲基-4-苯基-1,2,3,6-四氫-吡啶發炎作用氧化壓力細胞凋亡黑質紋狀體回聲定位蝙蝠
英文關鍵詞: Parkinson’s disease, MPTP, inflammation, oxidative stress, apoptosis, substantia nigra, striatum, echolocation bats
DOI URL: http://doi.org/10.6345/NTNU201900253
論文種類: 學術論文
相關次數: 點閱:198下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帕金森氏症 (Parkinson’s disease)是一種影響運動的神經退行性疾病,臨床表現包括顫抖、肌肉僵直以及步態遲緩,病理特徵是中腦黑質組織內多巴胺神經細胞的退化及死亡。過去帕金森氏症動物模式常採用腹腔注射1-甲基-4-苯基-1,2,3,6-四氫吡啶 (MPTP),導致帕金森氏症疾病模式。MPTP是一種親脂性的原毒素,以腹腔注射後即迅速穿過血腦屏障。一旦進入大腦,MPTP被星形膠質細胞攝取並通過單胺氧化酶-B (MAO-B)轉化為中間體1-甲基-4-苯基-2,3-二氫吡啶鎓 (MPDP)。然後再通過紋狀體神經元多巴胺D1接受器的蛋白將MPDP傳入紋狀體神經元。多巴胺神經元中的細胞質MPP抑制線粒體電子傳遞鏈的複合物I +然後將+快速且自發地氧化成毒性部分1-甲基-4-苯基吡啶鎓 (MPP + ; Chiba,Trevor,&Castagnoli,1984)。之後,MPP + +並導致ATP耗盡和氧化應激增加。出於這個原因,MPP +還選擇性地殺死多巴胺神經元 (Oxidative Stress and Neurodegenerative Disorders, 2007)。本論文選擇臺灣葉鼻蝠作為動物模式,腹腔連續注射MPTP一週後,利用免疫組織化學與西方墨點法分析蝙蝠中腦黑質與大腦基底核周邊的神經組織,檢視是否有類似帕金森氏症的表現。實驗結果顯示,中腦黑質神經細胞內合成多巴胺的相關酵素-芳香族L-胺基酸脫羧酶(AADC)表達減少;而且黑質神經細胞內發炎作用相關蛋白腫瘤壞死因子-α (TNF-α)、氧化壓力相關蛋白-3-硝基酪氨酸 (3-NT)及細胞凋亡相關蛋白-細胞淋巴瘤聯結X蛋白(BAX)、半胱天冬酶原3 (Caspase 3)表達增強;而黑質神經細胞內抗氧化壓力相關蛋白-超氧化物歧化酶 2 (SOD 2)與抗細胞凋亡相關蛋白-細胞淋巴瘤蛋白-2 (Bcl-2)表達降低;此外,基底核內紋狀體神經細胞多巴胺D1接受器蛋白表達減少。綜合上述研究結果,本論文實驗初步證實MPTP處理的回聲定位,蝙蝠確實會因為MPTP誘發黑質神經細胞產生發炎反應、氧化壓力、以及細胞凋亡,進而導致腦內黑質神經細胞損傷。由於MPTP實驗處理會使得回聲定位蝙蝠產生運動失調,此現象類似帕金森氏症病徵,這結果說明利用MPTP處理回聲定位蝙蝠的動物模式,未來應該可以作為探討帕金森氏症相關研究的新穎實驗動物平台。

    Parkinson’s disease is a neurodegenerative disease that affects exercise. Clinical manifestations include tremors, muscle stiffness, and gait retardation. Pathological features are degeneration and death of dopaminergic neurons in the substantia nigra tissue. In the past, most animal models of Parkinson's disease were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that affects the electron transport chain of granulocytes and then makes dopamine cells die. MPTP is a lipophilic protoxin that rapidly crosses the blood-brain barrier after intraperitoneal injection. Once in the brain, MPTP is taken up by astrocytes and converted to the intermediate 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP) by monoamine oxidase-B (MAO-B). MPDP is then introduced into the striatum neurons through the protein of the striatal neuron dopamine D1 receptor. Cytoplasmic MPP in dopamine neurons inhibits the mitochondrial electron transport chain complex I + and then rapidly + spontaneously oxidizes to the toxic moiety 1-methyl-4-phenylpyridinium (MPP + ; Chiba, Trevor, & Castagnoli, 1984 ). After that, MPP + + causes an increase in ATP depletion and oxidative stress. For this reason, MPP + also selectively kills dopamine neurons (Oxidative Stress and Neurodegenerative Disorders, 2007). In this thesis, an echolocation bat, Hipposideros armiger terasensis was selected as an animal model. After a week of continuous intraperitoneal injection of MPTP, we used immunochemistry and molecular biological technology to examine whether the substantia nigra and basal ganglia would be similar to other Parkinson's animal models. Our results showed that dopamine synthesis-related Aromatic L-amino acid decarboxylase (AADC) expressions in the substantia nigra were decreased, and those related protein expressions of inflammation-related Tumor Necrosis Factor-α (TNF-α), oxidative stress-related 3-Nitrotyrosine (3-NT), and apoptosis-related Bcl-2- Associated X (BAX) and Caspase 3 in the substantia nigra were increased, while those related protein expressions of anti-oxidative stress-related superoxide dismutase 2 (SOD2) and anti-apoptosis-related B-cell lymphoma 2 (Bcl-2) were decreased. In addition, dopamine D1 receptor protein expressions were decreased in the striatum. Based on our findings, the experiments in our thesis preliminary confirmed that the MPTP-treated echolocation bat may cause damage to the substantia nigra neurons in the brain due to the inflammation, oxidative stress, and apoptosis. Echolocation bats with MPTP treatment show ataxia that is similar to Parkinson's disease . Thus we suggested that MPTP-treated echolocation bats can be a novel experimental animal model to explore Parkinson's disease in the future.

    論文目錄 Ⅰ 附圖清單 Ⅱ 誌謝 Ⅲ 中文摘要 Ⅳ 英文摘要 Ⅴ 第一章 緒言 1-5 第二章 研究目的 6-7 第三章 材料方法 8-11 第四章 實驗結果 12-16 第五章 討論 17-21 第六章 結論 22-23 參考文獻 24-29 實驗圖表 30-48

    Blum, D; Torch, S; Lambeng, N; Nissou, M; Benabid, AL; Sadoul, R; Verna, JM. (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Progress in Neurobiology., 65 (2): 135–172.

    Chong ZZ, Li F, Maiese K. (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol.,75(3):207–246.

    Cicchetti F, Drouin-Ouellet J, Gross RE. (2009) Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models?. Trends Pharmacol. Sci., 30 (9): 475–83.

    Davie CA. (2008) A review of Parkinson's disease. Br. Med. Bull., 86 (1): 109–27.

    De Lau LM, Breteler MM. (2006) Epidemiology of Parkinson's disease. Lancet Neurol., 5 (6): 525–35.

    Goping G, Pollard HB, Adeyemo OM, Kuijpers GA. (1995) Effect of MPTP on dopaminergic neurons in the goldfish brain: a light and electron microscope study. Brain Res. 687(1-2):35-52.

    Hartmann A, Hunot S, Michel PP, et al. (2000) Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci U S A.,97(6):2875–2880.

    Harvey BK, Wang Y, Hoffer BJ. (2008) Transgenic rodent models of Parkinson's disease. Acta Neurochir. Suppl. Acta Neurochirurgica Supplementum., 101: 89–92.

    Kalia, LV; Lang, AE. (2015) Parkinson's disease. Lancet., 386 (9996): 896–912.

    Langston JW, Ballard P, Tetrud JW, Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. -02, 219 (4587): 979–80.

    Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G. (2010) Missing pieces in the Parkinson's disease puzzle. Nat. Med.,16 (6): 653–61.

    Parker KL, Lamichhane D, Caetano MS, Narayanan NS. (2013) Executive dysfunction in Parkinson's disease and timing deficits. Front. Integr. Neurosci. -10, 7: 75.

    Poli, A., Guarnieri, T., Facchinetti, F. and Villani, L. (1990) Effect of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in goldfish brain, Brain Res., 534 45-50.

    Pollard, H.B., Dhariwal, K., Adeyemo, O.M., Markey, C.J., Caohuy, H., Levine, M., Markey, S. and Youdim, M.B.H. (1992) A parkinsonian syndrome induced in the goldfish by the neurotoxin MPTP, FASEB J., 6 3108-3116.

    Russell JA, Ciucci MR, Connor NP, Schallert T. (2010) Targeted exercise therapy for voice and swallow in persons with Parkinson's disease. Brain Research. 1341: 3–11.

    Samii A, Nutt JG, Ransom BR. (2004) Parkinson's disease. Lancet, 363 (9423): 1783–1193.

    Schrag A. Epidemiology of movement disorders. (edit.) Tolosa E, Jankovic JJ. (2007) Parkinson's disease and movement disorders. Hagerstown, Maryland: Lippincott Williams & Wilkins.: 50–66.

    Shulman JM, De Jager PL, Feany MB (2011) Parkinson's disease: genetics and pathogenesis. Annual Review of Pathology. 6: 193–222.

    Sveinbjornsdottir, S (2016) The clinical symptoms of Parkinson's disease. Journal of Neurochemistry. 139: 318–324.

    Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol.; 53(Suppl 3):S61–S70.

    Tressler J, Schwartz C, Wellman P, Hughes S, Smotherman M (2011) Regulation of bat echolocation pulse acoustics by striatal dopamine. J Exp Biol. 214(19): 3238-3247.

    M.D., and C. David Marsden, M.D. (2000) Parkinson’s Disease: A Self-Help Guide, Marjan Jahanshahi, Demos Medical Publishing, 386 Park Avenue South, Suite 201, New York, NY 10016, (212) 683-0072.

    Heiko Braak,Estifanos Ghebremedhin,Udo Rüb,Hansjürgen Bratzke,Kelly Del Tredici (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res ,October 2004 318: 121–134.

    P. Damier, E.C. Hirsch, Y. Agid, A.M. Graybiel (1999) The substantia nigra of the human brain. II. Patterns of loss of dopaminergic neurons in Parkinson’s disease. Brain, 122 (1999), pp. 1437-1448

    Morin N., Jourdain V. A., Di Paolo T. (2014) Modeling dyskinesia in animal models of Parkinson disease. Exp. Neurol. 256 105–116 10.1016/j.expneurol.2013.01.024

    Di Monte D, Sandy MS, Ekström G, Smith MT. (1986) Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity. Biochem Biophys Res Comm.;137:303–309.

    McNaught KS, Thull U, Carrupt PA, Altomare C, Cellamare S, Carotti A, Testa B, Jenner P, Marsden CD. (1996) Effects of isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on mitochondrial respiration. Biochem Pharmacol.;51:1503–1511.

    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci.;3:1301–1306.

    Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ. (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res.;823:1–10.

    Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ, Son JH. (2001) Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J Neurochem.;76:1010–1021.

    Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA. (2000) The nigrostriatal dopamine system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci.;20:9207–9214.

    Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ.(1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res.;1:249–254.

    Langston JW, Forno LS, Rebert CS, Irwin I. (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the squirrel monkey. Brain Res.;292:390–394.

    Sonsalla PK, Heikkila RE. (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol. ;129:339–345.

    Andres-Mateos E., Mejias R., Sasaki M., Li X., Lin B. M., Biskup S., et al. (2009) Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). J. Neurosci. 29 15846–15850 10.1523,JNEUROSCI.4357-09.2009

    Ungerstedt U. (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5 107–110 10.1016/0014-2999(68)90164-7

    Marini AM, Lipsky RH, Schwartz JP, Kopin IJ. (1992) Accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in cultured cerebellar astrocytes. J Neurochem.58:1250–1258.

    Yazdani U, German DC, Liang CL, Manzino L, Sonsalla PK, Zeevalk GD. (2006) Rat model of Parkinson’s disease: Chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+) Exp Neurol.;200:172–183.

    Nicklas WJ, Vyas I, Heikkila RE. (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-pheny-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 1985;36:2503–2508.
    Ramsay RR, Dadgar J, Trevor A, Singer TP.(1986) Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the toxicity of MPTP. Life Sci. 1986;39:581–588.

    Sayre LM, Wang F, Hoppel CL. (1989) Tetraphenylborate potentiates the respiratory inhibition by the dopaminergic neurotoxin MPP+ in both electron transport particles and intact mitochondria. Biochem Biophys Res Comm.;161:809–818.

    Przedborski S, Jackson-Lewis V. (1998) Mechanisms of MPTP toxicity. Mov Disord.;13:35–38.

    Jedediah Tressler,Christine Schwartz,Paul Wellman,Samuel Hughes,Michael (2011) Smotherman Journal of Experimental Biology,214:3238-3247; doi:10.1242 / jeb.058149

    Blandini F., Armentero M.-T., Martignoni E. (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat. Disord. 14(Suppl. 2), S124–S129
    10.1016/j.parkreldis.2008.04.015

    Rodríguez Díaz M., Abdala P., Barroso-Chinea P., Obeso J., Gonzalez-Hernandez T. (2001) Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat: an animal model of Parkinson’s disease. Behav. Brain Res. 122 79–92 10.1016/S0166-4328(01)00168-1

    Lau Y-S, Fung YK, Trobough KL, Cashman JR, Wilson JA. (1991) Depletion of striatal dopamine by the N-oxide of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Neurotoxicology.;12:189–199.

    Chan P, DeLanney LE, Irwin I, Langston JW, Di Monti D. (1991) Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J Neurochem.;57:348–351.

    Davey GP, Peuchen S, Clark JB. (1998) Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem.;273:12753–12757.

    Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. (1995) Time course and morphology of dopaminergic neuronal cell death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration.;4:257–269.

    Sedelis M., Schwarting R. K. W., Huston J. P. (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav. Brain Res. 125, 109-122.

    Jackson-Lewis V., Jakowec M., Burke R. E., Przedborski S. (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4, 257-269.

    Schwartz C., Tressler J., Keller H., Vanzant M., Ezell S., Smotherman M. (2007) The tiny difference between foraging and communication buzzes uttered by the Mexican free-tailed bat, Tadarida brasiliensis. J. Comp. Physiol. A 193, 853-863.

    下載圖示
    QR CODE