研究生: |
簡秀萍 Chien Hsiu Ping |
---|---|
論文名稱: |
含氮多牙基之金屬錯合物合成、結構及其對於3-羥基黃酮氧化斷裂之催化反應的研究 Synthesis and Structure of Metal Complexes with a N-Containing Polydentate Ligand and Their Catalysis towards Oxidative Cleavage of 3-Hydroxyflavone |
指導教授: |
李位仁
Lee, Way-Zen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 3-羥基黃酮 |
英文關鍵詞: | 3-hydroxyflavone |
論文種類: | 學術論文 |
相關次數: | 點閱:164 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
為了模擬可催化黃酮醇類(flavonols)氧化斷裂反應之槲黃素氧化酶(quercetin 2,3-dioxygenase)的活化中心,本研究製備一個含雙苯咪唑的多牙基配子bis(1-methylbenzimidazole-2-ylmethyl)-N-p-toluenesulfonylamine (L),用以合成二價鎳、銅、鋅和錳等錯合物,並利用元素分析、紫外線/可見光光譜、電灑質譜、紅外線光譜及X-光單晶繞射解析法完成錯合物的鑑定。所合成的錯合物在1 mol%、5 mol%和10 mol%的比例下,分別與3-羥基黃酮(3-hydroxyflavone)和氧氣一起反應,並利用紫外光/可見光光譜儀追蹤反應的過程,我們發現二價鎳錯合物[LNi(DMF)3](ClO4)2 (3)及LNiCl2 (4)會催化3-羥基黃酮的氧化斷裂反應,在文獻中這是第一個例子。以10 mol%的錯合物3或4進行催化反應時,其受質的消耗速率分別比進行空白實驗時受質的消耗速率快6.0或5.8倍。但是銅錯合物[LCu-(DMF)3](ClO4)2 (1)、LCuCl2•0.5CH3OH (2)、錳錯合物[LMn(H2O)-(DMF)(CH3CN)](ClO4)2 (6)及並沒有顯現催化的能力,可能是錯合物1、2和6的配子從中心金屬解離了;而鋅錯合物[LZn(H2O)(CH3CN)](ClO4)2 (5)也沒有顯現催化的效果,其受質的消耗速率比空白實驗慢,可能是錯合物5與受質反應時,不會再進一步與氧氣進行氧化斷裂的反應。
Abstract
In order to mimic the active site of quercetin 2,3-dioxygenase, which catalyzes the oxidative cleavage of flavonals, a bis(benzimidazolyl) polydentate ligand, bis(1-methylbenzimidazole-2-ylmethyl)-N-p-toluene- sulfonylamine (L), was prepared to synthesize complexes of Ni(II), Cu(II), Zn(II), and Mn(II), which were fully characterized by elemental analysis, UV/vis, ESI-MS, IR spectroscopies, and X-ray crystallography. The synthesized complexes was employed to examine the reactions of 3-hydroxyflavone and dioxygen in the presence of 1 mol%, 5 mol%, and 10 mol% of mental complexes, and the reactions were monitored by UV/vis spectroscopy. Two complexes, [LNi(DMF)3](ClO4)2 (3) and LNiCl2 (4), were found to possess the catalytic ability towards the oxidative cleavage reaction of 3-hydroxyflavone. With 10 mol% of complexes 3 or 4, the catalytic rate of the reactions were 6.0 or 5.8 times faster than that of the control experiment. This is the first example in the literature. However, complexes, [LCu-(DMF)3](ClO4)2 (1), LCuCl2•0.5- CH3OH (2), [LMn(H2O)(DMF)-(CH3CN)](ClO4)2 (6), and [LZn(H2O)(CH3CN)](ClO4)2 (5), can not catalyze the above reaction. It is possible that L of 1, 2, and 6 was dissociated from the complexes in the reaction with 3-hydroxyflavone, or the substrate, 3-hydroxyflavone, was only coordinated to 5 and not to be catalyzed.
參考文獻
1.鄭建中,科學簡訊,2000, 12, 61-64。
2.Westlake, D. W. S.; Talbot, G.; Blakley, E. R. and Simpson, F. J. Can. J. Microbiol. 1959, 5, 621.
3. Mamma, D.; Diomi, M.; Kalogeris, E.; Hatzinikolaou, D. G.; Lekanidou,
A.; Kekos, D.; Macris, B. J.; Christakopoulos, P. Food Biotech. 2004,
18,1.
4. Krishnamurty, H. G.; Simpson, F. J. J. Biol. Chem. 1970, 245, 1467.
5. Tranchimand S.; Tron T.; Gaudin C. and Iacazio G. FEMS Microbiology Letters 2005, 253, 289.
6. Balogh-Hergovich, E.; Kaizer, J.; Speier, G. J. of Mol. Catal. A: Chem. 2003, 206, 83-87.
7. Oka, T.; Simpson, F.J.; Child, J. J.; Sister, M. C. Can. J. Microbiol. 1971, 17, 111.
8. Hund, H. K.; Breuer, J.; Lingens, F.; Hüttermann, J.; Kappl R.; Fetzner, S. Eur. J. Biochem. 1999, 263, 871.
9. Fusetti, F.; Schröter, K. H.; Steiner, R. A.; van Noort, P. I.; Pijning, T.; Rozeboom, H. J.; Kalk, K. H.; Egmond, M. R.; Dijkstra, B. W. Structure 2002, 10, 259.
10.Kooter, I. M.; Steiner, R. A.; Dijkstra, B. W.; van Noort, P. I.; Egmond, M. R.; Huber, M. Eur. J. Biochem. 2002, 269, 2971.
11.Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047.
12.Bowater, L.; Fairhurst, S. A.; Just, V. J.; Bornemann, S. FEBS Letters, 2004, 557, 45.
13.Gopal, B.; Madan, L.L.; Betz, S. F.; Kossiakoff, A. A. Biochemistry 2005, 44, 193.
14. Schaab, M. R.; Barney, B. M.; Francisco, W. A. Biochemistry 2006, 45, 1009.
15. Balogh-Hergovich, E.; Kaizer, J.; Speier, G.; Fü löp, V.; Párkányi, L. Inorg. Chem. 1999, 38, 3787.
16. Steiner, R. A.; Kalk, K. H.; Dijkstra, B. W. Proc. Natl. Acad. Sci. 2002, 99, 16625-16630.
17. Balogh-Hergovich, E.; Kaizer, J.; Speier, G.; Huttner, G.; Jacobi, A. Inorg. Chem. 2000, 39, 4224.
18. Utaka, M.; Hojo, M.; Fujii, Y.; Takeda, A. Chem. Lett. 1984, 635.
19. Balogh-Hergovich, E.; Speier, G.; Argay, G. J. Chem. Soc., Chem. Commun., 1991, 551.
20. Balogh-Hergovich, E.; Kaizer, J.; Speier, G.; Argay, G.; Parkanyi, L. J. Chem. Soc., Dalton Trans. 1999, 3847.
21. Balogh-Hergovich, E.; Kaizer, J.; Speier, G.; Fü löp, V.; Párkányi, L. Inorg. Chem. 1999, 38, 3787.
22. Balogh-Hergovich, E.; Kaizer, J.; Speier, G.; Huttner, G. J. Mol. Catal. A: Chem. 2003, 206, 87.
23. Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047.
24. Malkhasian, A. Y. S.; Finch, M. E.; Nikolovski, B.; Menon, A.; Kucera, B. E.; Chavez, F. A. Inorg. Chem. 2007, 46, 2950.
25. Kaizer, J.; Baráth, G.; Pap, J.; Speier, G.; Giorgi, M.; Réglier, M. Chem. Commun. 2007, 5235.
26. Csonka, R.; Kaizer, J.; Giorgi, M.; Hajba, L.; Speier, G. Inorg. Chem. 2008, 47, 6121-6123.
27. Adams, H.; Bailey, N. A.; Crane, J. D.; Fenton, D. E.; Latour, J. M.; Williams, J. M. J. Chem. Soc., Dalton Trans. 1990, 1727.