簡易檢索 / 詳目顯示

研究生: 楊謹瑜
Yang, Jin-Yu
論文名稱: 空氣汙染對於台灣北部午後對流影響之分析與模擬研究
An analysis and modeling study on the impacts of air pollution to afternoon convection in northern Taiwan
指導教授: 王重傑
Wang, Chung-Chieh
口試委員: 簡芳菁
Chien, Fang-Ching
林沛練
Lin, Pay-Liam
王重傑
Wang, Chung-Chieh
口試日期: 2022/06/27
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 94
中文關鍵詞: 空氣汙染懸浮微粒PM2.5PM10午後對流CReSS
英文關鍵詞: air pollution, PM2.5, PM10, afternoon convection, CReSS
研究方法: 個案研究法比較研究內容分析法
DOI URL: http://doi.org/10.6345/NTNU202200646
論文種類: 學術論文
相關次數: 點閱:149下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人為活動產生的污染可能是造成極端天氣現象加劇的因子之一,而風向、洋流和降雨量的變動都會導致全球各地天氣型態的改變,其中又以人為排放的溫室效應氣體與懸浮微粒為最主要因子,因此懸浮微粒不僅會對人類健康造成危害,也會對環境產生影響。

    其中空氣中的懸浮微粒(如空氣汙染物:PM2.5 以及 PM10)會透過輻射作用以及雲微物理效應來改變雲的生命週期抑或是降水分布的變化,但迄今為止對於空氣汙染物增加會導致降水如何改變的估計仍有非常大的不確定性。因此本研究藉由中央氣象局的地面觀測資料與衛星資料來挑選出 2016 年至 2019 年台灣雨季:6 月到 9 月的午後對流個案與無降雨個案,接著再整合行政院環保署的空氣品質監測數據來計算個案期間降水量與空氣汙染物的相關性分析。深入研究不同時間段、不同濃度對於日累積降水量、降水強度與降水總時長的相關係數。最後使用日本名古屋大學所發展的雲解析風暴模式(Cloud-Resolving Storm simulator,以下簡稱為 CReSS)來進行不同粒子濃度的模擬。

    分析結果顯示,PM2.5 在午後對流個案的空污粒子當日逐時之分布較為收斂,且粒子濃度的最大值落在當地時間中午 12 點到 13 點之間,整體分布為鐘形曲線,降水前會累積到最大值,降水後則有快速下降的趨勢,而 PM10 因為粒子粒徑尺寸大,被雨水沖刷的程度也更大,因此有更顯著的下降趨勢;無降雨個案除了分布較為發散之外,粒子濃度的最大值落在當地時間下午13 點到 14點之間,達到最大值濃度的時間較午後對流個案晚 1 個小時,其不同個案之間在凌晨與夜晚兩個極端值會有更大的差異性,顯示出午後對流個案比起無降雨個案,懸浮微粒的變化更有規律性。

    PM2.5 以及 PM10 對於降水量的相關性檢定統計結果有三個重要發現:(一)上午 0000-1000 LST 空污粒子濃度最小值,會影響午後對流的降水強度,兩者的相關係數為 0.48。(二)1100-1500 LST 空污粒子濃度最大值,則會影響午後對流當日降水總時長,兩者的相關係數為 0.473。(三)最小值與最大值之間的升幅變化,會影響午後對流的降水總時長,兩者的相關係數為 0.564。

    最後 CReSS 模擬結果與上述統計結果的第一點及第二點相符,整體而言,本研究能夠透過統計與模擬的方式來知悉兩個空氣汙染物與雲微物理作用的重要機制:當雲凝結顆粒數愈少時,微粒能夠抑制毛毛雨現象的程度愈明顯;當顆粒數愈多時,微粒能夠使雲的生命週期愈持久。

    Air pollution from human activities might be one of the factors that exacerbate extreme weather phenomena, and changes in wind direction, ocean currents and rainfall also affected in weather patterns around the world. Among them, greenhouse gases and suspended particulates that were made from human beings were the main elements.

    Particle materials in the air (such as air pollutants: PM2.5 and PM10) will change the life cycle of clouds or changes in precipitation distribution through radiation and cloud microphysical effects. However, how precipitation changed was still uncertain. Therefore, this study uses the ground observation data and satellite data of the Central Meteorological Administration to select the afternoon convection cases and no rainfall cases from 2016 to 2019 in the northern Taiwan.

    Using the monitoring data from the Environmental Protection Agency of the Executive Yuan to calculate the correlation analysis of precipitation and air pollutants during the case period. And then, the Cloud-Resolving Storm simulator (CReSS) developed by Nagoya University in Japan was used to simulate different particle concentrations.

    The analysis results show that the hourly data of PM2.5 in the afternoon convection cases were relatively convergent, and the maximum concentration was at 12:00 and 13:00 local time. The overall distribution was a bell-shaped curve. It will accumulate to the maximum value before raining, but decrease rapidly after the precipitation, however, because of the large particle size, PM10 was also washed out by the rain vigorously, so its overall distribution was more significant downward trend than others.The distribution of no rainfall cases was divergent. In addition, the maximum concentration time was at 13:00 and 14:00 local time, it was 1 hour later than afternoon convection cases. The results above shows that change of aerosols was more regular in the afternoon convection cases than in the no rainfall cases.

    There are three important findings in the statistical results of the correlation test of PM2.5 and PM10 in precipitation: (1) The minimum concentration of air pollution between 0000 and 1000 LST in the morning might affect the precipitation intensity of afternoon convection, and its correlation coefficient was 0.48. (2) The maximum concentration of air pollution between 1100 and 1500 LST might affect the total duration of precipitation on the day of afternoon convection, and its correlation coefficient was 0.473. (3) The change in the amplitude from the minimum value to the maximum value might affect the total duration of afternoon convective precipitation, and its correlation coefficient was 0.564.

    Finally, the CReSS simulation results were consistent with the statistical ones. Overall, this study could understand the important mechanisms of the interaction between air pollutants and cloud microphysics through statistics and simulations: when the number of cloud condensation particles is smaller, the particles can inhibit the the more pronounced the drizzle phenomenon is; the greater the number of particles, the longer the particles can make the cloud's life cycle.

    第一章 前言 1 1.1文獻回顧 1 1.2研究動機 4 1.3論文結構 5 第二章 資料來源與研究方法 6 2.1資料來源 6 2.2個案篩選 7 2.3研究方法 8 2.4模式簡介 11 2.5模式設定 14 第三章 懸浮微粒統計結果分析 16 3.1台北七測站背景介紹 16 3.2古亭測站懸浮微粒結果分析 18 3.3相關性檢驗結果 21 3.4小結 24 第四章 CReSS模擬結果 26 4.1個案背景介紹 26 4.2實際降水分布與2.5公里模擬結果之比較 27 4.3不同雲凝結核顆粒數在1公里模擬之結果 29 4.4 小結 40 第五章 總結 42 5.1 討論 42 5.2 結論 43 5.3未來工作 46 . 參考文獻 47

    王秋森、陳時欣、鄭曼婷、張艮輝(2016)。氣溶膠技術學(第三版)。新北市:大揚。

    陳泰然、王重傑、楊進賢(2002)。台灣梅雨季對流降水之時空分佈特徵。大氣科學,30,83-96。

    林品芳、張保亮、周仲島(2012)。弱綜觀環境下台灣午後對流特徵及其客觀預報。大氣科學,40,77-107。

    Akter, N. and Tsuboki, K. (2012). Numerical simulation of cyclone Sidr using a cloud-resolving model: characteristics and formation process of an outer rainband. Monthly Weather Review, 140, 789–810

    Andreae, M. O. (2007).Aerosols Before Pollution, Science, 315, 50-51

    Andreae, M. O. (2008).Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys. Discuss, 8, 11293-11320

    Bell, T. L., D. Rosenfeld. (2008). Comment on “Weekly precipitation cycles? Lack of evidence from United States surface stations” by D. M. Schultz et al, Geophys. Res. Lett, 35, L0980

    Bell, T. L., D. Rosenfeld, K. M. Kim, J. M. Yoo, M. I. Lee, and M. Hahnenberger. (2008). Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res. Atmos, 113, D02209, doi:10.1029/2007JD008623.

    Fan, J., rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., machado, L. A. t., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., Barbosa, H. M. j., Braga, R. C., Comstock, J. M., Feng, Z., Gao, W., Gomes, H. B., Mei, F., Pöhlker, C., Pöhlker, M. L., … De souza, R. A. f. (2018). Substantial Convection and Precipitation Enhancements by Ultrafine Aerosol Particles. Science, 359(6374), 411–418.

    Graber E. R., Y. Rudich. (2006). Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys, 6, 729

    Gunn R., B. B. Phillips. (1957). An Experimental investigation of the effect of air pollution on the initiation of rain, J. Meteorol, 14, 272-280

    Heever, S. C., G. G. Carrió, W. R. Cotton, P. J. DeMott, A. J. Prenni. (2006). Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations, Journal of the atmospheric sciences, 63 (7), 1752-1775

    Held I. M., T. L. Delworth, J. Lu, K. L. Findell, T. R. Knutson. (2005). Simulation of Sahel drought in the 20th and 21st centuries, Proc. Natl. Acad. Sci. U.S.A, 102, 17891

    Intergovernmental Panel on Climate Change (IPCC). (2013). Climate Change 2013, Working Group I Contribution to the IPCC Fifth Assessment Report. The Physical Science Basis Summary for Policymakers

    Khain, A., Pokrovsky, M. Pinsky, A. Seifert, V. Phillips. (2004). Simulation of Effects of Atmospheric Aerosols on Deep Turbulent Convective Clouds Using a Spectral Microphysics Mixed-Phase Cumulus Cloud Model. Part I: Model Description and Possible Applications, J. Atmos. Sci, 61, 2963-2982

    Koren, I., Y. J. Kaufman, L. A. Remer, J. V. Martins. (2004). Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation. Science, 303, 1342-1345

    Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, Y. Rudich. (2005). Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett, 32, L14828

    Lohmann, U., J. Feichter. (2005). Global indirect aerosol effects: a review. Atmos. Chem. Phys, 5, 715-737

    Lohmann U. (2008). Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos. Chem. Phys, 8, 2115-2131

    Lynn, B. H., Khain, A. P., dudhia, J., Rosenfeld, D., Pokrovsky, andrei, & Seifert, A. (2005). Spectral (Bin) Microphysics Coupled with a Mesoscale Model (MM5). Part I: Model Description and First Results. Monthly Weather Review, 113(1), 44–58. https://doi.org/https://doi.org/10.1175/MWR-2840.1

    Menon S., J. Hansen, L. Nazarenko, Y. F. Luo. (2002). Climate effects of black carbon aerosols in China and India, Science, 297, 2214-2215

    Menon, S., N. Unger, D. Koch, J. Francis, T. Garrett, I. Sednev, D. Shindell, and D. Streets. (2008). Aerosol climate effects and air quality impacts from 1980 to 2030. Environ. Res. Lett., 3, 024004

    Miller, R. L., I. Tegen, J. Perlwitz. (2004). Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. J. Geophys Res, 109, D04203

    Molinié, C., A. Pontikis. (1995). A climatological study of tropical thunderstorm clouds and lightning frequencies on the French Guyana Coast, Geophys. Res. Lett, 22, 1085-1088.

    Pincus, R., B. M. Baker. (1994). Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature volume, 372, 250–252

    Radke, J., A. Coakley Jr., M. D. King. (1989). Direct and remote sensing observations of the effects of ships on clouds, Science, 246, 1146-1155.

    Ramanathan, V., P. J. Crutzen, J. T. Kiehl, D. Rosenfeld. (2001). Aerosols, Climate, and the Hydrological Cycle, Science, 294, 2119-2124

    Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., Fu, Q., Sikka, D. R., & Wild , M. (2005). Atmospheric Brown Clouds: Impacts on South Asian Climate and Hydrological Cycle. PNAS, 102(15), 5326–5333. https://doi.org/https://doi.org/10.1073/pnas.0500656102

    Rosenfeld, D. (2000). Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science, 287, 1793-1796.

    Rosenfeld, D. (2006). Aerosol-Cloud Interactions Control of Earth Radiation and Latent Heat Release Budgets. Space Sci. Rev, 125, 149-157.

    Rosenfeld, D., Lohmann, U., Raga, G. B., o’dowd, colin D, Kulmala, M., Fuzzi, S., Reissell, A., & Andreae, M. O. (2008). Flood or Drought: How Do Aerosols Affect Precipitation? Science, 321(5894), 1309–1313. https://doi.org/https://doi.org/10.1126/science.1160606

    Rotstayn L. D., U. Lohmann. (2002). Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme. J. Geophys. Res, 107, 1029

    Rudich Y., A. Sagi, D. Rosenfeld. (2003). Influence of the Kuwait oil fires plume (1991) on the microphysical development of clouds. J. Geophys. Res, 108, 10.1029/2003JD003472

    Schwartz, J., L. M. Neas. (2000). Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology, 11, 6-10.

    Schultz, D. M., Mikkonen, S., Laaksonen, A., & Richman, M. B. (2007). Weekly Precipitation Cycles? Lack of Evidence from United States Surface Stations. Geophysical Research Letters, 34(22), L22815. https://doi.org/http://dx.doi.org/10.1029/2007GL031889

    Seifert, A, K. D. Beheng. (2006). A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms, Meteorol. Atmos. Phys, 92, 67-82

    Squires, P. (1958). The Microstructure and Colloidal Stability of Warm Clouds. Tellus, 10(2), 256-261

    Tao, W. K., Li, X., Khain, A., Matsui, T., Lang, stephen, & Simpson, J. (2008). Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations. Journal of Geophysical Research, 112(D24), S18.

    Teller A., Z. Levin. (2006). The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model, Atmos. Chem. Phys, 6, 67-80

    Twomey, S. (1974). Pollution and the planetary albedo. Atmospheric Environment, 8(12), 1251-1256

    Warner, J., S.Twomey. (1967). The Production of Cloud Nuclei by Cane Fires and the Effect on Cloud Droplet Concentration. J Atmos Sci, 24, 704-706

    Wang, C. (2004). Light scattering by fine particles during the Pittsburgh Air Quality Study: Measurements and modeling. J. Geophys. Res, 109, D03106

    Wang, C. (2005). A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res, 110, 1309-1313

    Wang, C.C., Kuo, H. C., Chen, Y. H., Huang, H. L., Chung, C. H. and Tsuboki, K. (2012). Effects of asymmetric latent heating on typhoon movement crossing Taiwan: the case of Morakot (2009) with extreme rainfall. Journal of the Atmospheric Sciences, 69, 3172–3196

    Williams, E., Rosenfeld, D., Madden, N., Gerlach, j, Gears, N., Atkinson, L., Dunnemann, N., Frostrom, G., Antonio, M., Biazon, B., Camargo, R., Franca, H., Gomes, A., Lima, M., Machado, R., Manhaes, S., Nachtigall, L., Piva, H., quintiliano, w, … Avelino, E. (2002). Contrasting Convective Regimes over the Amazon: Implications for Cloud Electrification. Journal of Geophysical Research, 107(D20), 8082.

    下載圖示
    QR CODE