簡易檢索 / 詳目顯示

研究生: 周彥維
Jhou, Yan-Wei
論文名稱: 奈米級紅熒烯/鈷薄膜的物理特性研究
Explorations of physical properties for nanoscale rubrene/cobalt films.
指導教授: 蔡志申
Tsay, Jyh-Shen
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 109
中文關鍵詞: 紅熒烯彈性模量磁光柯爾效應
英文關鍵詞: rubrene, cobalt, modulus, magneto-optical Kerr effect
DOI URL: http://doi.org/10.6345/DIS.NTNU.DP.002.2019.B04
論文種類: 學術論文
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期可撓式電子產品日益增加,且有機半導體材料具有由於低成本,且易於低溫製程,所以引起了很多關注,其中紅熒烯是具有高載子移動率的有機半導體。本研究中第一部分為紅熒烯奈米級雙層結構研究。X光反射率實驗與擬合,其中紅熒烯薄膜出現雙層模型特性,同時可定出紅熒烯表層的厚度為2.7±0.2奈米,且表層的散射密度長度數值低於下層塊材。紅熒烯厚度增加時,可以觀察到紅熒烯的表面形貌變化,從小顆粒轉變成大顆粒的奈米域(nano domain)。透過X光繞射實驗中,得知紅熒烯薄膜中具有相位分離的分層現象,代表紅熒烯薄膜中具有非單一晶相的奈米域,其中表層具有兩種次要結構,且下層塊材會有另一主要結構。不同厚度下紅熒烯薄膜彈性模量實驗,也可觀察到紅熒烯薄膜具有雙層模型特性趨勢,而後結合雙層模型彈性模量理論進行擬合時,可得知紅熒烯薄膜中表層與下層塊材間彈性模量等。四點探針電性測量時,紅熒烯薄中的雙層性質可用於表現在它的電阻行為,其中觀察到界面粗糙度對傳導電子的傳輸路徑敏感,該訊息對於有機半導體在可撓式面板中的未來應用是具有相當價值。
    第二部分的研究為鈷與紅熒烯在矽(100)上形成複合性薄膜的表面與磁性的研究,實驗中嘗試鈷與紅熒烯的比例為1:0.33、1:0.5、1:1。而複合薄膜成長時會傾向層狀方式成長,上層主要為紅熒烯,下層主要為鈷-紅熒烯。當複合薄膜厚度較厚時,其中足夠量的紅熒烯會形成界面活性劑,降低薄膜與矽(100)基板間界面的交互作用,使薄膜表面會非常平坦,且此時樣品的矯頑力較低,當複合薄膜厚度較薄時,表面會有殘留一些鈷的顆粒,薄膜表面較粗糙,其中粗糙的表面代表薄膜中有許多的缺陷,才會使磁化翻轉時矯頑力較大。在鈷與紅熒烯複合薄膜中,當提升紅熒烯薄膜的量時,讓複合薄膜中的鈷與紅熒烯的界面增加,且增加紅熒烯的界面活性劑作用機會,進而提升複合薄膜的品質。
    第三部分的研究為紅熒烯插層在鈷/矽(100)的表面與結構對磁性影響的研究。在鈷/矽(100)中會形成奈米鈷晶粒,在插層紅熒烯薄膜之後,紅熒烯會向上層的鈷擴散,讓鈷偏向形成非特殊晶相的膜,並且矯頑力的降低歸因於磁性材料中的缺陷密度下降。而在矯頑力數值附近的鈷/矽(100)柯爾顯微鏡圖像,觀察到在暗圖像中具有一些隨機分佈的缺陷,通過增加外加磁場,缺陷並不會在不同的磁場下移動,並且作為磁域壁運動的釘扎點,通過對鈷/紅熒烯/矽(100)的缺陷密度和矯頑力分析,進而得知樣品中鈷薄膜的磁域會以一維彎曲模型進行磁化翻轉,且缺陷與磁域壁為較強的交互作用。此研究主要透過磁光柯爾顯微鏡直接觀察到薄膜中的缺陷並定量出薄膜中的缺陷密度,如果此技術更加成熟,可以提供給磁性材料一個快速篩檢缺陷的方式。透過紅熒烯界面活性劑效應,改變薄膜中的缺陷,最後影響到薄膜中的磁特性,如果未來能結合薄膜彈性模量的研究,可以提供在可撓式有機磁性面板的開發。

    Because of the increasing interests in low-cost-, low-temperature-, and flexible-substrate-based electronics, semiconducting organic materials have attracted much attention. Rubrene (5,6,11,12-tetraphenylnaphthacene) is an organic semiconductor with the highest carrier mobility. The physical properties of rubrene thin films in nanometer scale are explored in this dissertation. Our findings indicate that a rubrene/Si(100) that is thinner than 10 nm typically has a cluster-type morphology. By further increasing the film thickness, the coexistence of structural phases in rubrene films causes the formation of a nano domain structure. Our research propose that structural phase-related bilayer model can be used to explain the layered nature of the rubrene films with layers comprised of different structures. The increase of elastic moduli shows a layered structure of the films where a softer surface layer is lying on a harder underlayer. In additional, the electric conductivities of the surface layer and the underlayer are resolved using four-probe method ad shows the possible applications in organic electronics.
    In the second part of the dissertation, structures and magnetic properties of Co-rubrene composite films on Si(100) have been studied. For composite films prepared by co-depositions of Co and rubrene on Si(100), the surface is smooth while a layered distribution of Co atoms is detected. The structural change of buried Co is explored using AFM after washing out the rubrene molecules in the composite films. For thin composite films, the formation of separated Co clusters in the films results in a larger coercive force due to the imperfection introduced by rough interface to impede the magnetization reversal. By changing the rubrene concentration, rubrene served as a surfactant and the optimal condition for a better quality of the films could be obtained. These information are valuable for future applications of organic molecules in spintronics.
    In the final part, experimental evidences shows the formation of nanocrystalline cobalt for Co/Si(100). After insertion of rubrene layer, the segregation of rubrene modifies the growth behavior of the deposited Co to form an amorphous film and the reduction of the coercive force is attributed to the less imperfections in magnetic materials. By further exploration of the defects in the films by magneto-optical Kerr microscopy, the point defects of Co/rubrene/Si(100) follow the one-dimensional bowing model with strong defect-domain wall interactions. The information concerning the surfactant effects of rubrene for growing Co/Si(100) is valuable for future applications of organic semiconductors for spintronics devices.

    致謝 3 摘要 3 Abstract 4 縮寫表 6 目錄 8 第一章 介紹: 1.1 研究動機: 11 1.2 矽(100)基板破片方法與晶面對電性的影響 17 1.3 有機材料紅熒烯的物理與化學特性 19 1.4 鈷結構與磁特性 20 1.5 有機材料結合磁性材料的應用 21 第二章 實驗儀器與原理: 2.1 超高真空系統 23 2.1.1 真空腔體 23 2.1.2 抽氣系統 24 2.1.3 壓力系統 25 2.1.4 濺鍍系統 26 2.1.5 氣體流量控制器 27 2.1.6 蒸鍍系統 28 2.1.7 冷卻系統 28 2.2 原子力顯微鏡 29 2.2.1 原子力顯微鏡的種類 30 2.3 大氣磁光柯爾效應儀 32 2.3.1 磁光柯爾效應理論 32 2.3.2 磁光柯爾效應儀器裝置 34 2.3.3 磁滯曲線 36 2.4. 磁光柯爾顯微鏡 37 2.4.1 磁光柯爾效應儀器裝置 38 2.4.2 磁光柯爾顯微鏡分析方式 40 2.5 四點量測法 41 2.6 X-光繞射 44 2.6.1 布拉格繞射 45 2.7 X光反射率 46 2.8 X光電子能譜儀 50 2.8.1 X光電子能譜儀原理與應用 50 第三章 基礎理論: 3.1 奈米級薄膜製程與成長原理 52 3.1.1 奈米薄膜製程 52 3.1.2 薄膜成長原理 52 3.2 鐵磁性物質 55 第四章 紅熒烯奈米級雙層結構研究 4.1 實驗方法 59 4.2 實驗內容與討論 59 4.3 實驗回顧與討論 71 第五章 鈷與紅熒烯在矽(100)上形成複合性薄膜的表面與磁性的研究 5.1 實驗方法 73 5.2 實驗內容與討論 73 5.3 實驗回顧與討論 81 第六章 紅熒烯插層在鈷/矽(100)系統表面與結構對磁性的研究 6.1 實驗方法 83 6.2 實驗內容與討論 83 6.3 實驗回顧與討論 95 第七章 研究結論與展望 96 參考資料 98

    [1] Vivek Raghuwanshi, Deepak Bharti, Ishan Varun, Ajay Kumar Mahato and Shree Prakash Tiwari, Performance enhancement in mechanically stable flexible organicfield effect transistors with TIPS-pentacene: polymer blend, Org. Electron., 34, 2016, 284-288.
    [2] Alejandro L. Briseno, Stefan C. B. Mannsfeld, Mang M. Ling, Shuhong Liu, Ricky J. Tseng, Colin Reese, Mark E. Roberts, Yang Yang, Fred Wud and Zhenan Bao, Patterning organic single-crystal transistor arrays, Nature, 444, 2006, 913-917.
    [3] Tatsuo Hasegawa and Jun Takeya, Organic field-effect transistors using single crystals, Sci. Technol. Adv. Mater., 10, 2009, 024314.
    [4] Yaqi Zhang, David R. Manke, Sahar Sharifzadeh, Alejandro L. Briseno, Ashwin Ramasubramaniam and Kristie J. Koski, The elastic constants of rubrene determined by Brillouin scattering and density functional theory, Appl. Phys. Lett., 110, 2017, 071903.
    [5] Marcos A. Reyes-Martinez, Ashwin Ramasubramaniam, Alejandro L. Briseno and Alfred J. Crosby, The Intrinsic Mechanical Properties of Rubrene Single Crystals, Adv. Mater., 24, 2012, 5548-5552.
    [6] Hirokuni Jintoku, Miho Yamaguchi, Makoto Takafuji and Hirotaka Ihara, Molecular Gelation‐Induced Functional Phase Separation in Polymer Film for Energy Transfer Spectral Conversion, Adv. Funct. Mater., 24, 2014, 4105-4112.
    [7] Hyemi Han, Sungho Nam, Jooyeok Seo, Chulyeon Lee, Hwajeong Kim, Donal D. C. Bradley, Chang-Sik Ha and Youngkyoo Kim, Broadband All-Polymer Phototransistors with Nanostructured Bulk Heterojunction Layers of NIR-Sensing n-Type and Visible Light-Sensing p-Type Polymers, Sci. Reps., 5, 2015, 16457.
    [8] Rui Huang, Christopher M. Stafford and Bryan D. Vogt, Effect of surface properties on wrinkling of ultrathin films, J. Aerospace Eng., 20, 2007, 38-44.
    [9] Zhimin Ao and Sean Li, Temperature- and thickness-dependent elastic moduli of polymer thin films, Nano. Res. Lett., 6, 2011, 243.
    [10] Zhi Min Ao and Qing Jiang, Size Effects on Miscibility and Glass Transition Temperature of Binary Polymer Blend Films, Langmuir, 22, 2006, 1241-1246.
    [11] Z. Fakhraai and J. A. Forrest, Measuring the Surface Dynamics of Glassy Polymers, Science, 319, 2008, 600-604.
    [12] Thomas R. Böhme and Juan J. de Pablo, Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures, J. Chem. Phys., 116, 2002, 9939.
    [13] Haruka Kusai, Shinji Miwa, Masaki Mizuguchi, Teruya Shinjo, Yoshishige Suzuki and Masashi Shiraishi, Large magnetoresistance in rubrene-Co nano-composites, Chem. Phys. Lett., 448, 2007, 106-110.
    [14] J. Camarero, T. Graf, J. J. de Miguel, R. Miranda, W. Kuch, M. Zharnikov, A. Dittschar, C. M. Schneider and J. Kirschner, Surfactant-Mediated Modification of the Magnetic Properties of Co /Cu(111) Thin Films and Superlattices, Phys. Rev. Lett., 76, 1996, 4428.
    [15] Chun-Liang Lin, An-Wei Wu, Ying-Chieh Wang, Yu-Chieh Tseng and Jyh-Shen Tsay, Spin reorientation transitions and structures of electrodeposited Ni/Cu(100) ultrathin films with and without Pb additives, Phys. Chem. Chem. Phys., 15, 2013, 2360-2367.
    [16] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries, Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys., 1996, 59, 1409–1458.
    [17] J. Lindner, P. Poulopoulos, R. Nunthel, E. Kosubek, H. Wende and K. Baberschke, Improved growth and the spin reorientation transition of Ni on (√2×2√2)R45°reconstructed O/Cu(001), Surf. Sci., 2003, 523, L65–L69.
    [18] S. M. Amir, Mukul Gupta, Ajay Gupta, Surfactant controlled interface roughness and spin-dependent scattering in Cu/Co multilayers, J. Stahn, Appl Phys A, 111, 2013, 495–499.
    [19] W. K. Fong, C. F. Zhu, B. H. Leung, C. Surya, B. Sundaravel, E. Z. Luo, J. B. Xu and I. H. Wilson, Characterizations of GaN films grown with indium surfactant by RF-plasma assisted molecular beam epitaxy, Microelectron. Reliab., 42, 2002, 1179-1184.
    [20] Jyh-Shen Tsay and Yeong-Der Yao, Magnetic phase diagram of ultrathin Co/Si(111) film studied by surface magneto-optic Kerr effect, Appl. Phys. Lett., 74, 1999, 1311.
    [21] J. S. Tsay, T. Y. Fu, M. H. Lin, C. S. Yang and Y. D. Yao, Microscopic interfacial structures and magnetic properties of ultrathin Co/Si(111) films, Appl. Phys. Lett., 2006, 88, 102506.
    [22] C. Chuang, W. Y. Chang, W. H. Chen, J. S. Tsay, W. B. Su, H. W. Chang and Y. D. Yao, Thickness dependent reactivity and coercivity for ultrathin Co/Si(111) films, Thin Solid Films, 519, 2011, 8371-8374.
    [23] Chih-Yu Hsu, Cheng-Hsun-Tony Chang, Wei-Hsiang Chen, Jai-Lin Tsai and Jyh-Shen Tsay, Comparative studies of magnetic properties of Co films on annealed and unannealed rubrene/Si(100), J. Alloys Compd., 576, 2013, 393-397.
    [24] W. J. M. Naber, S. Faez and W. G. van der Wiel, Organic spintronics, J. Phys. D, 40, 2007, 205-228.
    [25] Stefano Sanvito, Organic electronics: Spintronics goes plastic, Nat. Mater., 6, 2007, 803-804.
    [26] Claude Chappert, Albert Fert and F. N. Van Dau, The emergence of spin electronics in data storage, Nat. Mater., 6, 2007, 813-823.
    [27] Igor Zˇutic´, Jaroslav Fabian and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys., 76, 2004, 323-408.
    [28] A. M. Bratkovsky, Spintronic effects in metallic, semiconductor, metal–oxide and metal–semiconductor heterostructures, Rep. Prog. Phys., 71, 2008, 026502.
    [29] G. Schmidt, Concepts for spin injection into semiconductors—a review, J. Phys. D, 38, 2005, 107.
    [30] V. alek dediu, Luise. hueso, Ilaria bergenti and Carlo taliani, Spin routes in organic semiconductors, Nat. Mater., 8, 2009, 707-716.
    [31] T. Shimada, H. Nogawa, T. Noguchi, Y. Furubayashi, Y. Yamamoto, Y. Hirose, T. Hitosugi and T. Hasegawa, Magnetotransport Properties of Fe/Pentacene/Co:TiO2 Junctions with Fe Top Contact Electrodes Prepared by Thermal Evaporation and Pulsed Laser Deposition, Jpn. J. Appl. Phys., 47, 2008, 1184-1187.
    [32] Mirko Cinchetti, Kathrin Heimer, Jan-Peter Wüstenberg, Oleksiy Andreyev, Michael Bauer, Stefan Lach, Christiane Ziegler, Yongli Gao and Martin Aeschlimann, Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission, Nat. Mater., 8, 2009, 115-119.
    [33] Sayani Majumdar, Himadri S. Majumdar, R. Laiho and R. Österbacka, Comparing small molecules and polymer for future organic spin-valves, J. Alloys Compd., 423, 2006, 169-171.
    [34] J. H. Shim, K. V. Raman, Y. J. Park, T. S. Santos, G. X. Miao, B. Satpati and J. S. Moodera, Large Spin Diffusion Length in an Amorphous Organic Semiconductor, Phys. Rev. Lett., 100, 2008, 226603.
    [35] W. H. Taylor, X-Ray Measurements on Diflavylene, Rubrene, and Related Compounds, Zeitschrift für Kristallographie-Crystalline Materials, 93, 1963, 151-155.
    [36] Z. A. Akopyan, R. L. Avoyan, Y. T. Struchkov and Z. Strukt. Khim, Crystallographic data on certain sterically strained naphtacene derivatives, Zh. Strukt. Khim. J. Appl. Cryst., 3, 1962, 602-605.
    [37] D. E. Henn, W. G. Williams and D. J. Gibbons, Crystallographic data for an orthorhombic form of rubrene, J. Appl. Cryst., 4, 1971, 256.
    [38] V. Podzorov, V. M. Pudalov and M. E. Gershenson, Field-effect transistors on rubrene single crystals with parylene gate insulator, Appl. Phys. Lett., 82, 2003, 1739.
    [39] Yaqi Zhang, David R. Manke, Sahar Sharifzadeh, Alejandro L. Briseno, Ashwin Ramasubramaniam, and Kristie J. Koski, The elastic constants of rubrene determined by Brillouin scattering and density functional theory, Appl. Phys. Lett., 110, 2017, 071903.
    [40] Jin Woo Lee, Kihyun Kim, Jin Sun Jung, Seong Gi Jo, Hyo-min Kim, Hyun Soo Lee, Jeongyong Kim and Jinsoo Joo, Luminescence, charge mobility, and optical waveguiding of two-dimensional organic rubrene nanosheets: Comparison with one-dimensional nanorods, Org. Electron., 13, 2012, 2047-2055.
    [41] Seok Ju Kang, Bumjung Kim, Keun Soo Kim, Yue Zhao, Zheyuan Chen, Gwan Hyoung Lee, James Hone, Philip Kim and Colin Nuckolls, Inking Elastomeric Stamps with Micro-Patterned, Single Layer Graphene to Create High-Performance OFETs, Adv. Mater., 23, 2011, 3531-3535.
    [42] Bo Min Seo, Ji Hoon Seo, Jun Ho Kim, Jung Sun Park, Kum Hee Lee, Min Hye Park, Seung Soo Yoon and Young Kwan Kim, Efficient orange-red organic light-emitting diodes using 9,10-bis[4-(di-4-tert-butylphenylamino)styryl] anthracene as a fluorescent orange-red emitter, Thin Solid Films, 518, 2010, 6214-6218.
    [43] Eva J. Feldmeier and Christian Melzer, Multiple colour emission from an organic light-emitting transistor, Org. Electron., 12, 2010, 1166-1169.
    [44] B. W. Lee, R. Alsenz, A. Ignatiev and M. A. Van Hove, Surface structures of the two allotropic phases of cobalt, Phys. Rev. B, 17, 1978, 1510-1520.
    [45] H. A. Bandal, A. R. Jadhav and H. Kim, Cobalt impregnated magnetite-multiwalled carbon nanotubenanocomposite as magnetically separable efficient catalyst forhydrogen generation by NaBH4 hydrolysis, J. Alloys Compd., 669, 2017, 1057-1067.
    [46] Xiu Lin, Zhenzhen Nie, Liyun Zhang, Shuchuan Mei, Yuan Chen, Bingsen Zhang, Runliang Zhu and Zhigang Liu, Nitrogen-doped carbon nanotubes encapsulate cobalt nanoparticles as efficient catalysts for aerobic and solvent-free selective oxidation of hydrocarbons, Green Chem., 19, 2017, 2164-2173.
    [47] Yalda Zamani Keteklahijani, Mohammad Arjmand and Uttandaraman Sundararaj, Cobalt Catalyst Grown Carbon Nanotube/Poly(Vinylidene Fluoride) Nanocomposites: Effect of Synthesis Temperature on Morphology, Electrical Conductivity and Electromagnetic Interference Shielding, Chemistry Select., 2, 2017, 10271-10284.
    [48] P. J. F. Harris, Carbon Nanotubes and Related Structures, Cambridge University Press, Cambridge, Wiley, New York, 2003.
    [49] Haihong Zhong, Yun Luo, Shi He, Pinggui Tang, Dianqing Li, Nicolas Alonso-Vante and Yongjun Feng, Electrocatalytic Cobalt Nanoparticles Interacting with Nitrogen-Doped Carbon Nanotube in Situ Generated from a Metal–Organic Framework for the Oxygen Reduction Reaction, ACS Appl. Mater. Inter., 9, 2017, 2541-2549.
    [50] Nikolaos E. Tsakoumis, Magnus Rønning, Øyvind Borg, Erling Rytter and Anders Holmen, Deactivation of cobalt based Fischer–Tropsch catalysts: A review, Catal. Today, 154, 2010, 162-182.
    [51] O. Benamara, E. Snoeck, T. Blon and M. Respaud, Growth of Co ultrathin films on MgO(001), J. Cryst. Growth, 312, 2010, 1636-1644.
    [52] J. S. Tsay, Y. C. Liou, C. M. Chen and W. Y. Chan, Effects of Si capping layers on the properties of ultrathin Co/Ir(111) films, J. Vac. Sci. Technol. A, 27, 2009, 1266-1270.
    [53] M. D. Cooke, M. R. J. Gibbs and R. F. Pettifer, Sputter deposition of compositional gradient magnetostrictive FeCo based thin films, J. Magn. Magn. Mater., 237, 2001, 175-180.
    [54] G. Andersson and M. Björck, Anisotropy Tuning in Tetragonal FeCo Alloys, J. Nanosci. Nanotechno., 10, 2010, 6186-6189.
    [55] Shekhar D. Bhame and P. A. Joy, Magnetoelastic properties of terbium substituted cobalt ferrite, Chem. Phys. Lett., 685, 2017, 465-469.
    [56] P. N. Anantharamaiah and P. A. Joy, Tuning of the magnetostrictive properties of cobalt ferrite by forced distribution of substituted divalent metal ions at different crystallographic sites, J. Appl. Phys., 121, 2017, 093904.
    [57] Z. H. Xiong, Di Wu, Z. Valy Vardeny and Jing Shi, Giant magnetoresistance in organic spin-valves, Nature, 427, 2004, 821-824.
    [58] Yuet-Loy Chan, Ya-Jyuan Hung, Chia-Hao Wang, Ying-Chang Lin, Ching-Yuan Chiu, Yu-Ling Lai, Hsu-Ting Chang, Chih-Hao Lee, Y. J. Hsu and D. H. Wei, Magnetic Response of an Ultrathin Cobalt Film in Contact with an Organic Pentacene Layer, Phys. Rev. Lett., 104, 2010, 177204.
    [59] Dali Sun, Mei Fang, Xiaoshan Xu, Lu Jiang, Hangwen Guo, Yanmei Wang, Wenting Yang, Lifeng Yin, Paul C. Snijders, T. Z. Ward, Zheng Gai, X.-G. Zhang, Ho Nyung Lee and Jian Shen, Active control of magnetoresistance of organic spin valves using ferroelectricity, Nat. Commun., 5, 2014, 4396.
    [60] Shun Watanabe, Kazuya Ando, Keehoon Kang, Sebastian Mooser, Yana Vaynzof, Hidekazu Kurebayashi, Eiji Saitoh and Henning Sirringhaus, Polaron spin current transport in organic semiconductors, Nat. Phys., 10, 2014, 308-313.
    [61] Sudipto Chakrabarti and Amlan J. Pal, On the valve nature of a monolayer of aligned molecular magnets in tunneling spinpolarized electrons: Towards organic molecular spintronics, Appl. Phys. Lett., 104, 2014, 013305.
    [62] Marc Warner, Salahud Din, Igor S. Tupitsyn, Gavin W. Morley, A. Marshall Stoneham, Jules A. Gardener, Zhenlin Wu, Andrew J. Fisher, Sandrine Heutz, Christopher W. M. Kay and Gabriel Aeppli, Potential for spin-based information processing in a thin-film molecular semiconductor, Nature, 503, 2013, 504-508.
    [63] K. Wang, J. G. M. Sanderink, T. Bolhuis, W. G. van der Wiel and M. P. de Jong, Tunneling anisotropic magnetoresistance in C60-based organic spintronic systems, Phys. Rev. B, 89, 2014, 174419.
    [64] Marc Ramuz, Benjamin C-K. Tee, Jeffrey B.-H. Tok and Zhenan Bao, Transparent, Optical, Pressure-Sensitive Artifi cial Skin for Large-Area Stretchable Electronics, Adv. Mater., 24, 2012, 3223-3227.
    [65] Tushar Sharma, Sang-Soo Je, Brijesh Gill and John X. J. Zhang, Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application, Sens. Actuators A, 177, 2012, 87-92.
    [66] Qijun Sun, Do Hwan Kim, Sang Sik Park, Nae Yoon Lee, Yu Zhang, Jung Heon Lee, Kilwon Cho and Jeong Ho Cho, Transparent, Low-Power Pressure Sensor Matrix Based on Coplanar-Gate Graphene Transistors, Adv. Mater., 26, 2014, 4735-4740.
    [67] Qiulin Tan, Chen Li, Jijun Xiong, Pinggang Jia, Wendong Zhang, Jun Liu, Chenyang Xue, Yingping Hong, Zhong Ren and Tao Luo, A High Temperature Capacitive Pressure Sensor Based on Alumina Ceramic for in Situ Measurement at 600 °C, Sensors, 14, 2014, 2417-2430.
    [68] Sungryul Yun, Suntak Park, Bongje Park, Youngsung Kim, Seung Koo Park,
    Saekwang Nam and Ki-Uk Kyung, Polymer-Waveguide-Based Flexible Tactile Sensor Array for Dynamic Response, Adv. Mater., 26, 2014, 4474-4480.
    [69] Ingrid Graz, Martin Kaltenbrunner, Christoph Keplinger, Reinhard Schwödiauer, Siegfried Bauer, Stéphanie P. Lacour and Sigurd Wagner, Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones, Appl. Phys. Lett., 89, 2006, 073501.
    [70] Changhyun Pang, Gil-Yong Lee, Tae-il Kim, Sang Moon Kim, Hong Nam Kim, Sung-Hoon Ahn and Kahp-Yang Suh, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres, Nat. Mater., 11, 2012, 795-801.
    [71] Martin Kaltenbrunner, Tsuyoshi Sekitani, Jonathan Reeder, Tomoyuki Yokota, Kazunori Kuribara, Takeyoshi Tokuhara, Michael Drack, Reinhard Schwo¨diauer, Ingrid Graz, Simona Bauer-Gogonea, Siegfried Bauer and Takao Someya, An ultra-lightweight design for imperceptible plastic electronics, Nature, 499, 2013, 458-464.
    [72] Lijia Pan, Alex Chortos, Guihua Yu, Yaqun Wang, Scott Isaacson, Ranulfo Allen, Yi Shi, Reinhold Dauskardt and Zhenan Bao, An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film, Nat. Commun., 5, 2014, 3002.
    [73] Tsuyoshi Sekitani, Ute Zschieschang, Hagen Klauk and Takao Someya, Flexible organic transistors and circuits with extreme bending stability, Nat. Mater., 9, 2010, 1015-1022.
    [74] Canan Dagdeviren, Yewang Su, Pauline Joe, Raissa Yona, Yuhao Liu, Yun-Soung Kim, YongAn Huang, Anoop R. Damadoran, Jing Xia, Lane W. Martin, Yonggang Huang and John A. Rogers, Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring, Nat. Commun., 5, 2014, 4496.
    [75] Chunyan Li, Pei-Ming Wu, Lori A. Shutter and Raj K. Narayan, Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement, Appl. Phys. Lett., 96, 2010, 053502.
    [76] Mei-Ching Yu, Mei-Shiuan Yu, Meng-Kung Yu, Fan Lee and Wen-Hung Huang, Acute reversible changes of brachial-ankle pulse wave velocity in children with acute poststreptococcal glomerulonephritis, Pediatr. Nephrol., 26, 2011, 233-239.
    [77] Chwee-Lin Choong, Mun-Bo Shim, Byoung-Sun Lee, Sanghun Jeon, Dong-Su Ko, Tae-Hyung Kang, Jihyun Bae, Sung Hoon Lee, Kyung-Eun Byun, Jungkyun Im, Yong Jin Jeong, Chan Eon Park, Jong-Jin Park and U-In Chung, Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array, Adv. Mater., 26, 2014, 3451-3458.
    [78] Zetang Li and Zhong Lin Wang, Air/Liquid-Pressure and Heartbeat-Driven Flexible Fiber Nanogenerators as a Micro/Nano-Power Source or Diagnostic Sensor, Adv. Mater., 23, 2011, 84-89.
    [79] Yaping Zang, Fengjiao Zhang, Chong-an Di and Daoben Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications, Mater. Horiz., 2, 2015, 140-156.
    [80] Tsuyoshi Sekitani and Takao Someya, Stretchable, Large-area Organic Electronics, Adv. Mater., 22, 2010, 2228-2246.
    [81] Takao Someya, Tsuyoshi Sekitani, Shingo Iba, Yusaku Kato, Hiroshi Kawaguchi and Takayasu Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications, Proc. Natl. Acad. Sci., 101, 2004, 9966-9970.
    [82] Giovanni A. Salvatore, Niko Mu¨nzenrieder, Thomas Kinkeldei, Luisa Petti, Christoph Zysset, Ivo Strebe, Lars Bu¨the and Gerhard Tro¨ster, Wafer-scale design of lightweight and transparent electronics that wraps around hairs, Nat. Commun., 5, 2014, 2982.
    [83] C. Barraud, C. Deranlot, P. Seneor, R. Mattana, B. Dlubak, S. Fusil, K. Bouzehouane, D. Deneuve, F. Petroff and A. Fert, Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates, Appl. Phys. Lett., 96, 2010, 072502.
    [84] Jun-Yang Chen, Yong-Chang Lau, J. M. D. Coey, Mo Li and Jian-PingWang, High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications, Sci. Rep., 7, 2017, 42001.
    [85] Gregor Schwartz, Benjamin C.-K. Tee, Jianguo Mei, Anthony L. Appleton, Do Hwan Kim, Huiliang Wang and Zhenan Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring, Nat. Commun., 4, 2013, 1859.
    [86] Tsuyoshi Sekitani, Ute Zschieschang, Hagen Klauk and Takao Someya, Flexible organic transistors and circuits with extreme bending stability, Nat. Mater., 9, 2010, 1015-1022.
    [87] Shu Gong, Willem Schwalb, Yongwei Wang, Yi Chen, Yue Tang, Jye Si, Bijan Shirinzadeh and Wenlong Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires , Nat. Commun., 5, 2014, 3132.
    [88] Xuewen Wang, Yang Gu, Zuoping Xiong, Zheng Cui and Ting Zhang, Silk-Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals, Adv. Mater., 26, 2014, 1336-1342.
    [89] Anatoliy N. Sokolov, Benjamin C-K. Tee, Christopher J. Bettinger, Jeffrey B.-H Tok and Zhenan Bao, Chemical and Engineering Approaches To Enable Organic Field-Effect Transistors for Electronic Skin Applications, Acc Chem. Res., 25, 2011, 361-371.
    [90] Stephen R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature, 428, 2004, 911-918.
    [91] Myeon-Cheon Choi, Youngkyoo Kim and Chang-Sik H, Polymers for flexible displays: From material selection to device applications, Prog. Polym. Sci., 33, 2009, 581-630.
    [92] P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius and J. A. Rogers, Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors, Appl. Phys. Lett., 78, 2001, 3592.
    [93] W. A. MacDonald, Engineered films for display technologies, J. Mater. Chem., 14, 2004, 4-10.
    [94] 蘇青森, 真空技術精華, 五南書局出版公司, 臺北市, 2009.
    [95] 陳建人, 真空技術與應用, 行政院國家科學委員會精密儀器發展中心, 新竹市, 1994.
    [96] E. Ruska, G. Binnig and H. Rohrer, The Nobel Prize in Physics, Nobel Foundation, 1986.
    [97] F. J. Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys., 75, 2003, 949-983.
    [98] J. C. Vickerman and I. Gilmore, Surface Analysis - The Principal Techniques, Wiley, West Sussex, 2009.
    [99] G. Binning, C. F. Quate and Ch. Gerber, Atomic Force Microscope, Phys. Rev. Lett., 56, 1986, 930-933.
    [100] Xu Cheng, Karl W. Putz, Charles D. Wood and L. Catherine Brinson, Characterization of Local Elastic Modulus in Confi ned Polymer Films via AFM Indentation, Macromol. Rapid Commun., 36, 2015, 391-397.
    [101] J. Kerr and Philos. Mag., XXIV. On reflection of polarized light from the equatorial surface of a magnet, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 5, 1878, 161-177.
    [102] Shreyas Patankar, J. P. Hinton, Joel Griesmar, J. Orenstein, J. S. Dodge, Xufeng Kou, Lei Pan, Kang L. Wang, A. J. Bestwick, E. J. Fox, D. Goldhaber-Gordon, Jing Wang and Shou-Cheng Zhang, Resonant magneto-optic Kerr effect in the magnetic topological insulator Cr:(Sbx,Bi1−x)2Te3, Phys. Rev. B, 92, 2015, 214440.
    [103] Z. Q. Qiu and S. D. Bader, Surface magneto-optic Kerr effect, Rev. Sci. Instrum., 71, 2000, 1243-1255.
    [104] Z. Q. Qiu, J. Pearson and S. D. Bader, Additivity of the magneto-optic Kerr signal in ultrathin Fe(110)/Ag(111) superlattices, Phys. Rev. B, 45, 1992, 7211-7216.
    [105] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, London, 1991.
    [106] Yueh-Er Wu, Jyh-Shen Tsay, Shu-Chenms Chen, Tsu-Yi Fu and Ching-Song Shern, Magnetic Properties of Co/Si(100) Thin Films Studied using Magnetooptic Kerr Effect Technique, Jpn. J. Appl. Phys., 40, 2001, 6825-6828.
    [107] J. D. Jackson, Classical Electrodynamics, 3rd Ed., John Wiley & Sons Inc., New York, 1999.
    [108] D. Jiles, Introduction to magnetism and magnetic materials, CRC press, New Delhi, 2015.
    [109] A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, Springer, Heidelberg, 1998.
    [110] A. Geiler, H. Marvin, M. Zartarian, P. Head, A. Brandow and R. Loura, Magneto-Optical Kerr Effect Microscope, Northeastern University, Boston, 2006.
    [111] T. Enoki and T. Ando, Physics and Chemistry of Graphene, Taylor & Francis Group, Abingdon, 2014.
    [112] J. W. C. DE Vries, Temperature and thickness dependence of the resistivity of thin polycrystalline aluminium, cobalt, nickel, palladium, silver and gold films, Thin Solid Films, 167, 1988, 25-32.
    [113] W. Friedrich, P. Knipping and L. V. Laue, Interferenzerscheinungen bei Röntgenstrahlen, Ann. Phys., 364, 1913, 971-988.
    [114] D. A. Skoog, F. J. Holler and S. R. Crouch, Principles of Instrumental Analysis, 6th Ed., Thomson Brooks/Cole, Belmont, 2007.
    [115] O. Glatter and O. Kratky Eds., Small Angle X-ray Scattering, Academic Press, New York, 1982.
    [116] Andrei A. Bunaciu, Elena Gabriel, Udriştioiu and Hassan Y. Aboul-Enein, X-Ray Diffraction: Instrumentation and Applications, Crit. Rev. Anal. Chem., 45, 2015, 289-299.
    [117] D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics 10ed, Wiley, New York, 2013.
    [118] Cheng-Hsun-Tony Chang, Shin-Chen Chang, Jyh-Shen Tsay and Yeong-Der Yao, Enhanced exchange bias fields for CoO/Co bilayers: influence of antiferromagnetic grains and mechanisms, Appl. Surf. Sci., 405, 2017, 316-320.
    [119] Andrew Nelson, Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT, J. Appl. Cryst., 39, 2006, 273-276.
    [120] M. V. Avdeev, A. A. Rulev, V. I. Bodnarchuk, E. E. Ushakov, V. I. Petrenko, I. V. Gapon, O. V. Tomchuk, V. A. Matveev, N. K. Pleshanovf, E. Yu. Kataevc, L. V. Yashinac and D. M. Itkis, Monitoring of lithium plating by neutron reflectometry, Appl. Surf. Sci., 424, 2017, 378-382.
    [121] Liangzhi Zhou, Laura Fox, Magdalena Włodek, Luisa Islas, Anna Slastanova,
    Eric Robles, Oier Bikondoa, Robert Harniman, Neil Fox, Mattia Cattelan and Wuge H. Briscoe, Surface structure of few layer grapheme, Carbon, 136, 2018, 255e261.
    [122] R. Shankar, Principles of quantum mechanics, Springer Science & Business Media, New York, 2012.
    [123] D. L. Smith, Thin-Film Deposition: Principles and Practice, McGraw Hill Professional, New York, 1995.
    [124] J. A. Thornton, The microstructure of sputter-deposited coatings, J. Vac. Sci. Technol. A, 4, 1986, 3059-3065.
    [125] J. A. C. Bland and B. Heinrich, Magnetic anisotropy, magnetization and band structure, in Ultrathin Magnetic Structures I, Springer, Heidelberg, 1994.
    [126] C. Kittel, Introduction of Solid State Physics, 7th Ed., John Wiley & Sons Inc., New York, 1996.
    [127] G. Bertotti and I. D. Mayergoyz, The Science of Hysteresis: Hysteresis in materials, Academic Press, Maryland, 2005.
    [128] H. R. Hilzinger, Scaling relations in magnetic, mechanical and superconducting pinning theory, Phil. Magazine, 36, 1977, 225-234.
    [129] H. R. Hilzinger, Computer simulation of magnetic domain wall pinning, Phys. Status Solidi A, 38, 1976, 487-496.
    [130] Y. Tsuchimoto, H. Nagai, M. Amano, K. Bando and H. Kondo, Cavity polaritons in an organic single-crystalline rubrene microcavity, Appl. Phys. Lett., 104, 2014, 233307.
    [131] Jianhua Huang, Chuanlang Zhan, Xin Zhang, Yan Zhao, Zhenhuan Lu, Hui Jia, Bo Jiang, Jian Ye, Shanlin Zhang, Ailing Tang, Yunqi Liu, Qibing Pei and Jiannian Yao, Solution-Processed DPP-Based Small Molecule that Gives High Photovoltaic Efficiency with Judicious Device Optimization, ACS Appl. Mater. Interfaces, 5, 2013, 2033−2039.
    [132] By Eric Verploegen , Rajib Mondal , Christopher J. Bettinger , Seihout Sok , Michael F. Toney and Zhenan Bao, Effects of Thermal Annealing Upon the Morphology of Polymer−Fullerene Blends, Adv. Funct. Mater., 20, 2010, 3519−3529.
    [133] Miri Sinwani and Yaakov R. Tischler, Raman and Photoluminescence Properties of Red and Yellow Rubrene Crystals, J. Phys. Chem. C, 118, 2014, 14528−14533.
    [134]Yaqi Zhang, David R. Manke, Sahar Sharifzadeh, Alejandro L. Briseno, Ashwin Ramasubramaniam and Kristie J. Kosk, The elastic constants of rubrene determined by Brillouin scattering and density functional theory, Appl. Phys. Lett., 110, 2017, 071903.
    [135] H. G. Rubahn, H. Sitter, G. Horowitz and K. A. Shamery, Interface Controlled
    Oganic Thin Films, Springer, New York, 2009.
    [136] Qing Jiang and Xing You Lang, Glass Transition of Low-Dimensional Polystyrene, Macromol. Rapid Commun., 25, 2004, 825-828.
    [137] Moriyasu Kanari, Hirotaka Kawamata, Takashi Wakamatsu and Ikuo Ihara, Intermolecular elastic and plastic characteristics of organic phthalocyanine thin films evaluated by nanoindentation, Appl. Phys. Lett., 90, 2007, 061921.
    [138] Biplab K. Kuila and Arun K. Nandi, Structural Hierarchy in Melt-Processed Poly(3-hexyl thiophene)-Montmorillonite Clay Nanocomposites: Novel Physical, Mechanical, Optical, and Conductivity Properties, J. Phys. Chem. B, 110, 2006, 1621-1631.
    [139] Hanwhuy Lim, Teahoon Park, Jongbeom Na, Chihyun Park, Byeonggwan Kim and Eunkyoung Kim, Construction of a photothermal Venus flytrap from conductive polymer bimorphs, NPG Asia Mater., 9, 2017, e399.
    [140] Dongha Tahk, Hong H. Lee and Dahl-Young Khang, Elastic Moduli of Organic Electronic Materials by the Buckling Method, Macromol., 42, 2009, 7079-7083.
    [141] Samuel E. Root, Suchol Savagatrup, Adam D. Printz, Daniel Rodriquez and Darren J. Lipomi, Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics, Chem. Rev., 117, 2017, 6467-6499.
    [142] Jessica M. Torres, Christopher M. Stafford and Bryan D. Vogt, Impact of molecular mass on the elastic modulus of thin polystyrene films, Polym., 51, 2010, 4211-4217.
    [143] Hyungon Oh, Kyoungah Cho and Sangsig Kim, Electrical characteristics of a bendable a-Si:H thin film transistor with overlapped gate and source/drain regions, Appl. Phys. Lett., 110, 2017, 093502.
    [144] C. H. Lin, W. H. Chen, J. S. Tsay, I. T. Hong, C. H. Chiu and H. S. Huang, Structures and magnetic properties of Co and CoFe films prepared by magnetron sputtering, Thin Solid Films, 519, 2011, 8379-8383.
    [145] Carl W. Magnuson, Xianghua Kong, Hengxing Ji, Cheng Tan, Huifeng Li, Richard Piner, Carl A. Ventrice and Rodney S. Ruoff, Copper oxide as a “self-cleaning” substrate for graphene growth, J. Mater. Res., 29, 2014, 403-409.
    [146] M. Grobosch, C. Schmidt, W. J. M. Naber, W. G. van der Wiel and M. Knupfer, A pho-toemission study of interfaces between organic semiconductors and Co as wellas Al2O3/Co contacts, Synth. Met., 160, 2010, 238–243.
    [147] Yong-Jhih Hou, Cheng-Hsun-Tony Chang, Chun-Kai Yang, Chih-Yu Hsu, Yen-Wei Jhou and Jyh-Shen Tsay, Structural determination and magnetic properties for Co–rubrene composite films on Si(100), Appl. Surf. Sci., 354, 2015, 139-143.
    [148] A. R. Ivanova, G. Nuesca, X. Chen, C. Goldberg, A. E. Kaloyeros, Z. B. Arkles and John J. Sullivan, The effects of processing parameters in the chemical vapor deposition of cobalt from cobalt tricarbonyl nitrosyl, J. Electrochem. Soc., 146, 1999, 2139-2145.
    [149] Qing Li, Christina W. Kartikowati, Shinji Horie, Takashi Ogi, Toru Iwaki and Kikuo Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep., 7, 2017, 9894.
    [150] A. Latapie and D. Farkas, Effect of grain size on the elastic properties of nanocrystalline α-iron, Scripta Mater., 48, 2003, 611–615.
    [151] Anton Bachleitner-Hofmann, Bernhard Bergmair, Thomas Schrefl, Armin Satz and Dieter Suess, Soft Magnetic Properties of Thin Nanocrystalline Particles Due to the Interplay of Random and Coherent Anisotropies, IEEE T. Magn., 53, 2017, 2002806.
    [152] Majid Niaz Akhtar, Kashif Ali, Asim Umer, Tahir Ahmad and Muhammad Azhar Khan, Structural elucidation, and morphological and magnetic behavior evaluations, of low-temperature sintered, Ce-doped, nanostructured garnet ferrites, Mater. Res. Bull., 101, 2018, 48–55.
    [153] Fangfang Wang, Wenna Ge, Tong Shen, Bangjiao Ye, Zhengping Fu and Yalin Lu, The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film, Appl. Surf. Sci., 410, 2017, 513-518.
    [154] K. Maniammal, G. Madhu and V. Biju, X-ray diffraction line profile analysis of nanostructured nickel oxide: Shape factor and convolution of crystallite size and microstrain contributions, Physica E, 85, 2017, 214-222.
    [155] T Ungár, S Ott, P. G Sanders, A Borbély and J. R Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis, Acta Mater., 46, 1998, 3693-3699.
    [156] Patrick G. Callahan, Jean-Charles Stinville, Eric R. Yao, McLean P. Echlin, Michael S. Titus, Marc De Graef, Daniel S. Gianola and Tresa M. Pollock, Transmission scanning electron microscopy: Defect observations and image simulations, Ultramicroscopy, 186, 2018, 49-61.
    [157] Mayerling Martinez, Gwendoline Fleurier, František Chmelík, Michal Knapek,
    Bernard Viguier and Eric Hug, TEM analysis of the deformation microstructure of polycrystalline cobalt plastically strained in tension, Mater. Charact., 134, 2017, 76-83.

    無法下載圖示 本全文未授權公開
    QR CODE