簡易檢索 / 詳目顯示

研究生: 蔡鎮宇
Tsai, Chen-Yu
論文名稱: 以產品圖形為基的方法分析手機及相機功能之相關性研究
A Product Graph-based Method for Relevance Research on Mobile Phones and the Camera Functions
指導教授: 侯文娟
Hou, Wen-Juan
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 46
中文關鍵詞: 手機評論產品推薦加權有向圖非監督式學習自然語言處理
英文關鍵詞: Mobile reviews, Product recommendations, Weighted directed graphs, Unsupervised learning, NLP
DOI URL: http://doi.org/10.6345/NTNU202001193
論文種類: 學術論文
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網路的普及,店家的銷售模式及消費者的購物模式逐漸改變,許多人購物前會事先在網路論壇等平台查詢產品相關評價後才決定是否購買。網路論壇常見的討論方式為發佈一篇與產品之間比較的文章,而許多網友則會在下方留下自己偏好的產品以及一些對產品的看法。
    本論文使用的資料來自於批踢踢實業坊Mobilecomm看板文章,實驗語料選自文章中的網友所撰寫的文章推文。研究目的主要希望針對這些文章推文進行極性分析,透過分析結果進一步對產品進行排名。儘管產品的整體排名是一項重要的指標,但現在越來越多消費者會根據相機功能選購手機,因此研究中同時會對相機功能的部分進行排名。
    在計算手機品牌分數上,本研究將建立有向加權圖確立每個手機品牌之間的關係,透過定義比較句和主觀判斷句的方式,以這些句子建立每個產品本身的分數以及有向邊的分數。
    最後透過正向句和負向句不同的權重計算方式得出兩種不同結論。當使用正向句分數減去負向句分數時,得出當相機功能排名靠前時,手機品牌的分數不會靠後。當使用正向句分數除以負向句分數時,目前暫時無法判斷手機品牌與相機功能的相關性。

    With the popularization of the Internet, the sales model of stores and the shopping model of consumers have gradually changed. Many people will check product-related reviews on online forums and other platforms before making decision. A common discussion method on online forums is to post an article to compare products, and many people will reply some opinions about the products below the article.
    This thesis downloaded the review data from PTT Mobilecomm. The experimental corpus is selected from the article tweets written by people in the article. The main purpose of the research is to analyze the sentiment of these articles and tweets, and to further rank products according to the analysis results. Although the overall ranking of products is an important measure, more and more consumers choose mobile phones based on camera functions now. The research will also rank based on the camera functions.
    In calculating the scores of mobile phone’s brands, this research will establish a directed weighted graph to establish the relationship between each mobile phone’s brand. By defining comparative sentences and subjective sentences, these sentences are used to establish the vertex score and directed edges score of each product.
    Finally, two different conclusions are drawn through the different weight calculation methods of positive and negative sentences. When the weight is calculated by the positive sentence score subtracting the negative sentence score, it is concluded that when the camera function score ranks high, the score of the mobile phone brand will not fall behind. When the weight is calculated by the positive sentence score divided by the negative sentence score, it is currently impossible to determine the correlation between the score of mobile phone brand and the score of camera functions.

    摘要 I Abstract III 附表目錄 VII 附圖目錄 VIII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 論文架構 3 第二章 相關文獻探討 4 第一節 中文斷詞系統 4 第二節 情感語意字典 9 第三節 PageRank演算法 11 第四節 產品推薦相關研究 13 第三章 研究方法與步驟 15 第一節 緒論 15 第二節 實驗資料 17 第三節 文章斷詞與詞性標記 21 第四節 擴充情感字典語料庫 22 第五節 建立加權有向圖 24 第六節 排名分數計算 30 第四章 實驗結果與分析 32 第一節 情感字典數值化結果 32 第二節 加權有向圖結果 34 第三節 手機和相機功能排名 37 第五章 結論和未來發展 43 參考文獻 44

    Decker, R., & Trusov, M. (2010). Estimating aggregate consumer preferences from online product reviews. International Journal of Research in Marketing, 27(4), 293-307.

    Ku, L. W., & Chen, H. H. (2007). Mining opinions from the Web: Beyond relevance retrieval. Journal of the Association for Information Science and Technology, 58(12), 1838-1850

    Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data.

    Li, S., Zha, Z. J., Ming, Z., Wang, M., Chua, T. S., Guo, J., & Xu, W. (2011, July). Product comparison using comparative relations. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval (pp. 1151-1152).
    Miao, Q., Zhang, S., Meng, Y., & Yu, H. (2013, May). Domain-sensitive opinion leader mining from online review communities. In Proceedings of the 22nd International Conference on World Wide Web (pp. 187-188).

    Netzer, O., Feldman, R., Goldenberg, J., & Fresko, M. (2012). Mine your own business: Market-structure surveillance through text mining. Marketing Science, 31(3), 521-543.

    Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web. Stanford InfoLab.

    Wang, S. M., & Ku, L. W. (2016, May). ANTUSD: A large Chinese sentiment dictionary. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16) (pp. 2697-2702).

    Zhang, Z., Guo, C., & Goes, P. (2013). Product comparison networks for competitive analysis of online word-of-mouth. ACM Transactions on Management Information Systems (TMIS), 3(4), 1-22.

    中研院中文斷詞系統:http://ckipsvr.iis.sinica.edu.tw/

    無法下載圖示 電子全文延後公開
    2025/08/27
    QR CODE