簡易檢索 / 詳目顯示

研究生: 林思宏
論文名稱: 鎳/鈷/鉑(111)超薄膜的表面結構及合金形成探討
指導教授: 沈青嵩
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 86
中文關鍵詞: 低能電子繞射紫外光電子能譜術歐傑電子能譜
英文關鍵詞: LEED, UPS, AES, Pt
論文種類: 學術論文
相關次數: 點閱:209下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用歐傑電子能譜(Auger Electron Spectroscopy, AES)、低能電子繞射(Low Energy Electron Diffraction, LEED)、以及紫外光電子能譜術(Ultraviolet Photoelectron Spectroscopy, UPS)來深入探討鎳超薄膜鍍於 1ML Co / Pt(111) 的成長模式以及在高溫形成合金時的成份、結構變化。
    室溫下,鎳薄膜鍍於1ML Co / Pt(111)的成長模式為兩層平整成長之後再以三維島狀的S. K mode。由AES、LEED均能得到相同的結論。
    x ML Ni / 1 ML Co / Pt(111) 系統 (x=0.5、1、2、3)在升溫的過程中,鈷、鎳原子會在440K先形成混合態,隨著溫度的升高鈷、鎳原子均會往白金擴散,隨著鎳厚度的增加,鈷、鎳混合層往白金擴散的溫度也隨之增加。當鎳層數為0.5ML、1ML、2ML、3ML時,開始擴散的溫度分別為550K、580K、600K、620K。
    在1ML Ni / 1ML Co / Pt(111)系統在經過退火效應後,LEED繞射圖形在580K前為(1×1)周圍有六角衛星點,超過580K時六角衛星點便會消失,而在650K時(1×1)周圍又出現了更小的三對稱的六角衛星點,700K時在每個(1×1)主繞射點周圍繞射點只能看到其中三個小衛星點,800K時衛星點又再次消失,為(1×1)的繞射亮點。
    從離子濺射的深度分析中,我們發現1ML Ni / 1ML Co / Pt(111)經過750K的退火效應後,鎳原子擴散比鈷原子還要深,而表面則以Co、Pt兩種原子為主。
    UPS以及I-V LEED分析中,系統在升溫至580K以上,皆出現明顯的變化,此與AES中鈷、鎳往白金擴散的溫度相呼應。

    目錄 第一章 緒論..................................................1 第二章 儀器設備與工作原理....................................6 2-1 樣品的清潔與製備.........................................6 2-1-1 超高真空系統...........................................6 2-1-2 樣品的清潔.............................................9 2-1-3 樣品的升降溫系統.......................................9 2-1-4 樣品的蒸鍍設備.........................................11 2-2 歐傑電子能譜術...........................................12 2-2-1 歐傑效應與電子能譜.....................................12 2-2-2 同心半球型能譜分析儀...................................15 2-2-3 電子能譜的分析.........................................17 2-2-4 歐傑電子能譜的應用.....................................19 2-3 低能電子繞射儀...........................................25 2-3-1 反商晶格與電子繞射.....................................25 2-3-2 LEED的工作方式.........................................29 2-3-3 LEED所傳達的表面訊息...................................31 2-3-4 I-V LEED...............................................34 2-4 紫外光電子能譜術.........................................36 2-4-1 由光電效應到紫外光電子能譜.............................36 2-4-2 紫外光源的產生.........................................38 第三章 實驗結果與討論........................................40 3-1 樣品的準備...............................................40 3-1-1 樣品的清潔.............................................40 3-1-2 鈷鍍源的刻度...........................................41 3-1-3 鎳鍍源的刻度...........................................41 3-1-4 鎳在1ML Co / Pt (111)上的成長模式......................42 3-1-5 LEED的測量結果.........................................44 3-1-6 成長模式的討論..........................................46 3-2 利用AES觀測 x ML Ni / 1ML Co / Pt (111) 的合金形成.......47 3-2-1 x ML Ni / 1ML Co / Pt (111) 的成金形成.................47 3-3 利用LEED觀測 1 ML Ni / 1ML Co / Pt (111)系統.............61 3-3-1 觀測 1 ML Ni / 1ML Co / Pt (111) 的成金結構............61 3-3-2 I-V LEED求1 ML Ni / 1 ML Co / Pt (111) 層距隨溫度變化..69 3-4 AES 配合離子濺射作深度分析...............................72 3-5 利用UPS 觀測1ML Ni / 1ML Co / Pt (111)...................75 3-5-1 以UPS檢驗升溫過程中電子組態的變化......................75 3-6 1 ML Ni / 1ML Co / Pt (111) 特殊結構的討論...............78 第四章 結論..................................................82 參考資料......................................................84

    [1] P. Grütter and U. T. Dürig, Phys. Rev. B 49, 2021 (1994)
    [2] E.R. Moog, J. Zak, S.D. Bader, J. Appl. Phys. 69, 880 (1991)
    [3] R. Krishnan and H. Lassri, J. Appl. Phys. 73, 6433 (1993)
    [4] L.Krusin-Elbaum, T. Shibauchi, B. Argyle, L. Gignac, D. Weller, Nature. 410, 444 (2001)
    [5] C. S. Shern, S. L. Chen, J. S. Tsay and R. H. Chen, Phys. Rev. B 58, 7328 (1998)
    [6] C. W. Su, Y. E. Wu, C. S. Shern, Surf. Sci. 482-485, 898 (2001)
    [7] C. S. Shern, C. W. Su, Y. E. Wu, and S. H. Chen, Surf. Sci. Lett. 495, L821 (2001)
    [8] Y. E. Wu, C.W. Su, F. C. Chen, C. S. Shern, R. H. Chen, JMMM. 239, 291 (2002)
    [9] J. S. Tsay and C. S. Shern, Surf. Sci. 396, 313 (1998)
    [10] J. S. Tsay and C. S. Shern, Surf. Sci. 396, 319 (1998)
    [11] C. W. Su, H. Y. Ho, C. S. Shern, R. H. Chen, Surf. Sci. 499, 103 (2002)
    [12] C. W. Su, H.Y Ho, C. S. Shern, R. H. Chen, Thin Solid Films 139
    [13] L. Argile and G. E. Rhead, Surf. Sci. Rep. 10, 277 (1989)
    [14] E. Bauer, Appl. Surf. Sci. 11/12, 479 (1982)
    [15] 蔡萍實,師大物理系碩士論文 (1992)
    [16] B. Dodson, Phys. Rev. B 36, 6288 (1987)
    [17] P. Grütter, U. T. Barrett, R. Belkhou, C. Guillot, H. Koundi, J. Phys. Condens. Metter (1994)
    [18] J. S. Tsay, C. S. Shern, J. Appl. Phys. 80, 3777 (1996)
    [19] Jean-Claude Bertolini, Applied Catalysis 191, 15 (2000)
    [20] G. Ertl, J. Küppers;“Low Energy Electrons and Surface Chemistry”;ISBN:3-527-26056-0
    [21] D. Braggs and M. R. Seah,“Practical Surface Analysis”(1984)
    [22] “Handbook of Auger Electron Spectroscopy” (Perkin-Elmer Inc. 1978)
    [23] H. Li, S. C. Wu, D. Tian, Y. S. Li, J. Quinn and F. Jona, Phys. Rev. B 44, 1438 (1991)
    [24] S. Tanuma, C. J. Powell and D. R. Penn, Surf. Interface Anal. 25, 25 (1997)
    [25] Charles Kittel,“Introduction to Solid State Physics”(1991)
    [26] 徐國棟,師大物理系碩士論文(1992)
    [27] 張東勇,師大物理系碩士論文(1993)
    [28] M. Zheng, J. Shen, P. Ohresser, Ch. V. Mohan, M. Klaua, J. Barthel and J. Kirschner, J. Appl. Phys. 85, 5060 (1999)
    [29] Gabor A. Somorjai,“Chemistry Two Dimensions Surface”1984, p.129
    [30] Y. –L. He, J. –K. Zuo, G. –C. Wang, Surf. Sci.269-279 (1991)
    [31] J. A. Venables,“ Introduction to Surface and Thin Film Processses”(Cambridge University Press, 2000)
    [32] L. I. Maisser, R.Glang(Eds), “Handbook of Thin Film Technology”, McGraw-Hill, New York (1983)
    [33] M. Hansen, Constitution of Binary Alloys, McGraw-Hill Book Company, New York, 1958.
    [34] B. M. Clemens, W. D. Nix and V. Ramaswamy, J. Appl. Phys. 87, 2816 (2000)
    [35] P. Gambardella, K. Kern, Surf. Sci. 475, L229 (2001)
    [36] P. Gambardella, M.Blanc, L. Bürgi, K. Kuhnke, K. Kern, Surf. Sci. 449, 93 (2000)
    [37] 邱雅雯,師大物理系碩士論文 (2002)
    [38] B. A. Parkinson, F. S. Ohuchi, K. Ueno, and A. Koma, Appl. Phys. Lett. 58, 472 (1991)
    [39] S. Tiefenbacher, C. Pettenkofer, W. Jaegermann, Surf. Sci. 450,181 (2000)
    [40] W. Weiss and G. A. Somorjai,J. Vac. Sci. Technol. A 11(4),2138 (1993)
    [41] G.L. Kellogg, Surf. Sci. 266, 18 (1992)
    [42] A. Atrei, U. Bardi, M. Galeotti, G. Rovida, M.Torrini, and E. Zanazzi, Surf. Sci. 339, 323 (1995)
    [43] E. Lundgren, G.. Leonardelli, M. Schmid, P. Varga, Surf. Sci, 498, 257 (2002)
    [44] Z. X. Cao, Surf. Sci, 452, 220 (2000)
    [45] Hans Luth,“Surface and Interfaces to Solids”ISBN:0-387-56840-9(p.137)
    [46] Y. Gauthier, Surf. Rev. Lett. 3, 1663 (1996)
    [47] P. Wiegand, P. Novacek, G. Vanhusen, T. Neidhart, P. Varga, Surf. Sci. 270, 1129 (1992)

    QR CODE