簡易檢索 / 詳目顯示

研究生: 周彥廷
論文名稱: 低磁場核磁共振梯度接收線圈應用於肝腫瘤組織檢驗
指導教授: 楊鴻昌
Yang, Hong-Chang
廖書賢
Liao, Shu-Hsien
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 38
中文關鍵詞: 低磁場核磁共振梯度線圈腫瘤量測超導量子干涉元件縱向鬆弛時間
英文關鍵詞: longitudinal relaxation time, gradiometer, tumor, SQUID, low field NMR
論文種類: 學術論文
相關次數: 點閱:170下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們整合結合超導量子干涉元件(superconducting quantum interference device, SQUID)和預極化技術,提高低磁場核磁共振系統的量測訊雜比,並將此系統應用於肝腫瘤檢測。為了解決在非磁屏蔽環境下,測量磁場隨環境磁場漂移,而導致磁共振頻率飄移的問題,我們使用磁通閘監控環境磁場之變化,作為磁共振訊號頻率修正之參考,成功增加了訊號頻譜之訊雜比。然在量測微量樣品時,為了降低環境雜訊並避免冷卻預極化線圈的循環水的訊號被量測到。我們採用了梯度接收線圈的設計,成功消除了循環水的訊號。在1.5 高斯的主磁場、930高斯的預極化磁場之條件下,進行了微量(0.5 ~ 0.1 g)之老鼠腫瘤與正常肝組織之縱向鬆弛時間(T1)之量測,與0.5 g 老鼠肝臟腫瘤與正常組織之混合樣品之鬆弛時間檢測。驗證本研究之低場磁共振系統具臨床應用的潛力。

    第一章 緒論 ………………………………………………………………………1 第二章 實驗原理 …………………………………………………………………3 2-1 核磁共振原理 ………………………………………………………………3 2-2 縱向鬆弛與橫向鬆弛 ……………………………………………………… 5 第三章 實驗架構與系統改進 ………………………………………………… 10 3-1 系統架構介紹 ………………………………………………………………10 3-2 使用磁通閘以進行主磁場之修正 ……………………………………… 12 3-3 配合磁通閘進行FAA與TFAA之修正 …………………………………… 16 3-4 梯度計 …………………………………………………………………… 18 3-5 梯度計之最佳化 ………………………………………………………… 20 3-6 主磁場之更換 ………………………………………………………… 23 第四章 實驗結果與數據討論 ………………………………………………… 24 4-1 縱向鬆弛時間(T1)之量測 ……………………………………………… 24 4-2 不同重量老鼠肝腫瘤與正常肝組織之T1量測 ……………………… 27 4-3 不同比例老鼠肝腫瘤與正常肝組織混合樣本之T1量測 …………… 32 第五章 結論 …………………………………………………………………… 36 參考文獻 ………………………………………………………………………… 37

    [1] Don C. Rockey,Stephen H. Caldwell,Zachary D. Goodman,Rendon C. Nelson,and Alastair D. Smith, ” Liver Biopsy “, HEPATOLOGY, Vol. 49, No. 3, (2009)
    [2] Erin Brender, MD, ” Frozen Section Biopsy “, 3200 JAMA, December 28, 2005—Vol 294, No. 24 (2005)
    [3] April M. Chow PhD, Darwin S. Gao BEng, Shu Juan Fan MSc, Zhongwei Qiao MD, Frank Y. Lee BEng, Jian Yang MD, PhD, Kwan Man PhD and Ed X. Wu PhD, ”Measurement of liver T1 and T2 relaxation times in an experimental mouse model of liver fibrosis “, Journal of Magnetic Resonance Imaging ,Volume 36, Issue 1, pages 152–158, July (2012).
    [4] S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis, A.R.Young, W. Happer,” Theory of spin-exchange optical pumping of 3He and 129Xe “, Phys. Rev. A 58, 1412 (1998).
    [5] M. Goldman, H. Jo’hannesson, O. Axelsson, M. Karlsson, “Hyperpolarization of 13C through order transfer from parahydrogen: A new contrast agent for MRI “, Magn.Reson. Imaging 23, 153 (2005)
    [6] G. Navon, Y.-Q. Song, T. Ro˜o˜m, S. Appelt, R.E. Taylor, A. Pines,” Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Science 271, 1848 (1996).
    [7] S. Appelt, F.W. Ha‥sing, S. Baer-Lang, N.J. Shah, B. Blümich, “Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Chem. Phys. Lett. 348, 263 (2001)
    [8] Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”,J. Appl. Phys. 102, 033914 (2007).
    [9] M.A. Espy, A.N. Matlachov, P.L. Volegov, J.C. Mosher, and R.H.Kraus Jr., ” SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields”, IEEE Trans.Appl. Supercon. 15, 635 (2005).
    [10] A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines, “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A 108, 957-963 (2004).
    [11] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, “Microtesla MRI with a superconducting quantum interference Device”, Proc. Natl. Acad. Sci. USA 101, 7857 (2004).
    [12] M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA.
    [13] H. C. Seton, D.M. Busell, J.S.M. Hutchison, I. Nicholson, D.J. Lurie, Phys. Med. Biol. 73, 2133 (1992).
    [14] H. C. Seton, J.S.M. Hutchison, D. M. Busell, Meas. Sci. Technol. 8, 198 (1997).
    [15] H. C. Seton, J.S.M. Hutchison, D. M. Busell, IEEE Trans. Appl. Supercon. 7, 3213 (1997).
    [16] Hong-Chang Yang,Shu-Hsien Liao, Herng-Er Horng,Shing-Ling Kuo,Hsin-Hsien Chen, and S. Y. Yang, Appl. Phys. Lett. 88, 252505 (2006)
    [17] S. Kumar, R. Mathews, S. G.. Haupt, D.K. Lathrop, M. Takigawa, J. R. Rozen, S. L. Brown, R. H. Koch, Appl. Phys. Lett. 70, 1037 (1997).
    [18] S. Kumar, W. F. Avrin, B. R. Whitecotton, IEEE Trans. Magn. 32, 5261 (1996).
    [19] K. Schlenga, R. F. McDemott, J. Clarke, R. E. de Souza, A. Wong-Foy, A. Pines, Appl. Phys. Lett. 75, 3695 (1999).
    [20] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, IEEE Trans. Magn 25, 1193 (1989).
    [21] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. IEEE Trans. Appl. Supercon. 15, 635 (2005).
    [22] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, Appl. Phys. Lett. 87, 054103 (2005)
    [23] M A Bernstein, K F King and X J Zhou. Handbook of MRI Pulse Sequences. Elsevier Academic Press, 960 (2004)

    下載圖示
    QR CODE