研究生: |
葉育慈 Yeh, Yu-Tzu |
---|---|
論文名稱: |
螢光量子點應用於氣體感測器之研製 Research and Fabrication of Gas Sensors Employing Fluorescent Quantum Dots |
指導教授: |
呂家榮
Lu, Chia-Jung |
口試委員: |
呂家榮
Lu, Chia-Jung 劉茂煌 Liu, Mao-Huang 王志嘉 Wang, Chih-Chia |
口試日期: | 2024/01/31 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 量子點 、奈米銀 、光致發光 、揮發性有機化合物 |
英文關鍵詞: | Quantum Dots, Silver nanoparticle, Photoluminescence, Volatile Organic Comounds |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400730 |
論文種類: | 學術論文 |
相關次數: | 點閱:144 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用 CdSe/ZnS 量子點作為材料,結合自製微型光學感測器的紙張型感測器,以材料光致發光的特性檢測揮發性有機化合物 (Volatility Organic Compound,VOC) 的紙片型感測器。微型光學感測器使用市售之綠光感測器結合雙低通濾波放大電路,與光譜儀相比,大幅降低了成本。本研究做幾項影響因素的探討,包含光源的選擇、感測器的比較及其數據計算方式,成功的測量七種有機氣體於爆炸下限 1/10 的濃度,其結果具有良好的再現性及穩定性,線性迴歸係數大多大於 0.99。
奈米銀具有奈米金屬增強螢光之特性,因此在本研究中還觀察 CdSe/ZnS 量子點混合奈米銀 Ag@C16 之螢光強度變化,結果為混合 Ag@C16 的量子點對有機氣體的選擇性及螢光強度的增強無太大的幫助,其可能原因為量子點溶液被稀釋或量子點與奈米銀的距離不適當所導致的。而此感測器對於水也有良好的反應及再現性,使其亦有潛力成為濕度感測器。最後,在本研究中,通過氣體吸附與表面反應、電荷轉移機制等方式,去探討量子點接觸氣體後螢光上升的可能機制。
In this study, a paper-type sensor using CdSe/ZnS quantum dots in combination with a micro-optical sensor was used to detect volatile organic compounds (VOCs) using the photoluminescent property of the material. The miniature optical sensor uses a commercially available green light sensor combined with a dual low-pass filter amplifier circuit, which significantly reduces the cost compared to a spectrometer. In this study, several influencing factors were investigated, including the choice of light source, the comparison of sensors, and the calculation of data, and seven organic gases were successfully measured at a concentration of 1/10 of the lower explosive limit, with good reproducibility and stability, and most of the linear regression coefficients were greater than 0.99.
Nano-silver has the property of nano-metal to enhance the fluorescence, so in this study, we also observed the fluorescence intensity change of CdSe/ZnS quantum dots mixed with nano-silver Ag@C16, and the result was that the quantum dots mixed with Ag@C16 did not help much in the selectivity of the organic gases and the enhancement of the fluorescence intensity, and the probable reason was that the quantum dots were diluted in the solution or the distance between the dots and the nano- III silver was not appropriate. This sensor also has good response and reproducibility to water, which makes it a potential humidity sensor. Finally, in this study, the possible mechanisms of the fluorescence rise of the quantum dots after contacting with gas are investigated through gas adsorption and surface reaction and the charge transfer mechanism.
Kenny, T. (2005). CHAPTER 7 – Chemical Sensors. In J. S. Wilson (Ed.), Sensor Technology Handbook (pp. 181-191). Burlington: Newnes.
Klein, R. C., King, C., & Labbie, P. (2004). Solvent Vapor Concentrations Following Spills in Laboratory Chemical Hoods. Chemical Health & Safety, 11(2), 4-8. DOI: 10.1016/j.chs.2003.10.004
Nakashima, H., Nakajima, D., Takagi, Y., & Goto, S. (2007). Volatile organic compound (VOC) analysis and anti-VOC measures in water-based paints. Journal of Health Science, 53(3), 311-319
Jiang, R., Tran, D. T., McClure, J. P., & Chu, D. (2015). Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst. ACS Applied Mater Interfaces, 7(33), 18530-18539. DOI: 10.1021/acsami.5b04714.
Teh, J. J., Ting, S. L., Leong, K. C., Li, J., & Chen, P. (2013). Gallium-doped tin oxide nano-cuboids for improved dye-sensitized solar cell. ACS Appl Mater Interfaces, 5(21), 11377-11382. DOI: 10.1021/am403640s.
Ho, M. L., Liu, W. F., Tseng, H. Y., Yeh, Y. T., Tseng, W. T., Chou, Y. Y., Pan, S. W. (2020). Quantitative determination of leukocyte esterase with a paper-based device. RSC Adv, 10(45), 27042-27049. DOI: 10.1039/d0ra03306e.
Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling, and sensing. Nature Materials, 4(6), 435–446
Gaur, M., Misra, C., Yadav, A. B., Swaroop, S., Maolmhuaidh, F. O., Bechelany, M., & Barhoum, A. (2021). Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials (Basel), 14(20). DOI: 10.3390/ma14205978.
Chaban, V. V., Prezhdo, V. V., & Prezhdo, O. V. (2013). Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot Nanocomposites: Time-Domain Ab Initio Study. J Phys Chem Lett, 4(1), 1-6. DOI: 10.1021/jz301878y.
Bauri, S., Tripathi, S., Choudhury, A. M., Mandal, S. S., Raj, H., & Maiti, P. (2023). Nanomaterials as Theranostic Agents for Cancer Therapy. ACS Applied Nano Materials, 6(23), 21462-21495. DOI: 10.1021/acsanm.3c04235.
李言榮, 惲正中. (2003). 材料物理學概論. 五南圖書
馬振基. (2005). 奈米材料科技原理與應用. 全華科技圖書
Pollack, H. W. (1988). Materials science and metallurgy, 4th Edition. Pearson
Roduner, E. (2006). Size matters: why nanomaterials are different. Chem. Soc. Rev., 35(7), 583-592.
Kubo, R. (1962). Electronic properties of metallic fine particles. I. Journal of the Physical Society of Japan, 17(6), 975-986.
Hong, K., Le, Q. V., Kim, S. Y., & Jang, H. W. (2018). Low-dimensional halide perovskites: review and issues. J. Mater. Chem. C., 6(9), 2189-2209
高麗婷. (2019). 表面修飾不同型態奈米銀應用於表面電漿共振有機氣體感測器之研究. 國立臺灣師範大學化學系.
Murphy, C. J., & Jana, N. R. (2002). Advanced Materials, 14(1), 80-82.
Chen, Z., Balankura, T., Fichthorn, K. A., & Rioux, R. M. (2019). ACS Nano, 13(2), 1849-1860.
Rawat, R. S. (2015). Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology. Journal of Physics: Conference Series, 591, 012021
Brust, M., Walker, M., Bethell, D., Shiffrin, D., & Whyman, R. (1994). Journal of the Chemical Society, Chemical Communications, 801.
Rajabi, H. R. (2016). Photocatalytic Activity of Quantum Dots. In Semiconductor Photocatalysis - Materials, Mechanisms and Applications.
Vansark, W. G. J. H. M., Frederix, P. L. T. M., Bol, A. A., Gerritsen, H. C., & Meijerink, A. (2002). ChemPhysChem, 3, 871.
Cordero, S. R., P. J., Carson, P. J., et al. (2008). The Quantum Dot-Alkaline Phosphatase Nanosystem Achieves Extracellular Phosphorylation of the Peptide Substrate. Nano Letters, 8(2), 546–551.
Mekis, I., Talapin, D. V., Kornowski, A., Haase, M., & Weller, H. (2003). J. Phys. Chem. B, 107, 7454
Kim, T., Yoon, C., Song, Y. G., Kim, Y. J., & Lee, K. (2016). J. Lumin., 177, 54.
Chang, Y. J., Yao, X. D., Zhang, Z. P., Jiang, D. L., Yu, Y. L., Mi, L. F., Wang, H., Li, G. P., Yu, D. B., & Jiang, Y. J. (2015). J. Mater. Chem. C, 3, 2831.
Skoog, D. A., Holler F. J., & Crouch S. R. (2017). Principles of Intrumental Analysis, 7th Edition, Cengage Learning.
Zimmermann, J., Zeug, A., & Röder, B. (2003). Chem. Phys, 5(14), 2964–2969.
McGOWN, L. B., & Nithipatikom, K. (2000). Molecular Fluorescence and Phosphorescence, 353-393.
Chan, W. C. W., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., Nie, S. (2002). Current Opinion in Biotechnology, 13(1), 40–46.
Nazzal, A. Y., Qu, L., Peng, X., & Xiao, M. (2003). Nano Letters, 3(6), 819–822.
Yang, X., Xu, R., Bao, D., & Li, B. (2014). Gold nanorod-enhanced light emission in quantum-dot-doped polymer nanofibers. ACS Appl Mater Interfaces, 6 (15), 11846-11850. DOI: 10.1021/am503580j From NLM PubMed-not-MEDLINE.
Aslan, K., Gryczynski, I., Malicka, J., Matveeva, E., Lakowicz, J. R., Geddes, C. D. (2005). Current Opinion in Biotechnology, 16(1), 55-62.
Aslan, K., Lakowicz, J.R., & Szmacinski, H. (2004). Journal of Fluorescence, 14, 677–679.
Kwan, R. C., Hon, P. Y., Mak, W. C., Law, L. Y., Hu, J., Renneberg R., (2006). Biosensors and Bioelectronics, 21(7), 1101-6.
蘇育政; 江惠華; 洪敏偉. (2009). 科儀新知, 69-76.
Hong, G. S., Tabakman, S. M., Welsher, K., Wang, H., Wang, X., Dai, H. (2010). Metal-Enhanced Fluorescence of Carbon Nanotubes. J. Am. Chem. Soc., 132(45), 15920-15923. DOI: 10.1021/ja1087997.
Tobias, A. K., & Jones, M. (2019). Metal-Enhanced Fluorescence from Quantum Dot-Coupled Gold Nanoparticles. J. Phys. Chem. C., 123, 1389−1397.
Nazzal, A. Y., Qu, L., Peng, X., & Xiao, M. (2003). Nano Letters, 3(6), 819–822
Xue, S., Jiang, X. F., Zhang, G., Wang, H., Li, Z., Hu, X., ... Xing, X. (2020). ACS Sensors, 5(4), 1002–1009.
張雅淇. (2021). 距離調控式奈米銀增強螢光的感測機制應用於紙片型光學感測器之研製. 國立臺灣師範大學化學系.
呂泉. (2006). 現代傳感器原理及應用, 清華大學出版社, 228.
Kamat, P. V.; Barazzouk, S.; Hotchandani, S. (2002). Angewandte Chemie International Edition, 41(15), 2764-2767.
Yuan, B.; Zhang, X.; Yu, J.; Zhou, L.; Luo, B.; Liu, Y.; Chen, R. (2022). Optical Humidity Sensor Based on CdSe/ZnS Quantum Dots Modified by Porous Silica. Advanced Materials Interfaces, 9(29). DOI: 10.1002/admi.202201366.
Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. (2019). Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv Mater, 31(34), e1804294. DOI: 10.1002/adma.201804294 From NLM PubMed-not-MEDLINE.
Cordero, S. R.; Carson, P. J.; Estabrook, R. A.; Strouse, G. F.; Buratto, S. K. (2000). Photo-Activated Luminescence of CdSe Quantum Dot Monolayers. J. Phys. Chem. B, 104(51), 12137–12142.
Pechstedt, K.; Whittle T.; Baumberg J.; Melvin T. (2010). Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules. J. Phys. Chem. C, 114, 12069–12077.
Lin, Z., Liao, F., Zhu, L., Lu, S., Sheng, M., Gao, S., & Shao, M. (2014). Visible light enhanced gas sensing of CdSe nanoribbons of ethanol. CrystEngComm, 16(20). DOI: 10.1039/c3ce42577k.
Mishra, R. K., Choi, G. J., Choi, H. J., & Gwag, J. S. (2021). ZnS Quantum Dot Based Acetone Sensor for Monitoring Health-Hazardous Gases in Indoor/Outdoor Environment. Micromachines (Basel), 12(6). DOI: 10.3390/mi12060598. From NLM PubMed-not-MEDLINE.