研究生: |
王穎潔 Wang Ying-Chieh |
---|---|
論文名稱: |
以電化學方法製備之Ni/Cu(100)薄膜的磁性研究 Magnetic properties of Ni/Cu(100) thin films prepared by electrochemical method |
指導教授: |
蔡志申
Tsay, Jyh-Shen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 電化學 、電鍍薄膜 、鎳/銅(100) 、磁異向能 、電化學掃描式電子穿隧顯微鏡 、循環伏安法 、電化學磁光柯爾效應系統 |
英文關鍵詞: | Ni/Cu(100), thin films, electrochemical, cyclic voltammetry, electrochemical scanning tunnelling microscopy, electrochemical magneto-optic Kerr effect, Perpendicular magnetic anisotropy |
論文種類: | 學術論文 |
相關次數: | 點閱:256 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用電化學電鍍方式在單晶銅(100)電極上成長鎳薄膜,同時使用循環伏安法(Cyclic Voltammetry)、電化學磁光柯爾效應系統(EC-MOKE)、電化學掃描式電子穿隧顯微鏡(EC-STM)來研究單晶銅(100)上所成長鎳薄膜的表面特性與磁特性。
實驗使用銀當作電化學參考電極,此電極屬於pseudo-reference electrode,其電位利用能士特方程式計算與文獻參考比較結果,與標準氫電極電位差大約是+87~130 mV 之間。經過多次實驗測試,在本實驗系統中數據呈現高再現性。以循環伏安法檢測,單晶銅(100)電極在1 mM HCl電解液中電化學過程,發現電流成對峰值:銅溶解與銅沉積,往陰極方向加大範圍掃描,-800 mV(vs Ag)開始有氫氣產生反應(質子還原:H++e-→1/2H2)出現。加入鎳的電解液1 mM HCl+1 mM NiCl2則出現另外一個成對峰值分別在-1200 mV與-400 mV,實驗數據顯現此對峰之間相關性甚大,推測是鎳的吸附(Ni2++2e-→Ni)與退吸附(Ni→Ni2++2e-)反應。選擇在-1200 mV電位下電鍍鎳,控制電鍍時間以製造不同鎳膜厚度,透過積分CV圖的鎳退吸附峰算出電荷量和已知電鍍面積(0.292 cm2)可分析沉積鎳的膜厚。電解液裡的氯離子會修飾銅(100)電極表面,透過STM掃描圖像可以觀察到銅(100)表面直角台階的特徵。
電鍍鎳/銅(100)磁性行為主要分成四部分結論:(1)在1.52 ML以下沒有磁性原因是電鍍鎳量很少又加上氫氣產生的效應。 (2)在2.47~7.05 ML認為是磁異向能的轉換,易軸變成Polar方向,表示有垂直磁異向能出現,與UHV系統有相同的現象發生。 (3)在13.4 ML~29.0 ML之間的磁化易軸變成平行樣品表面,趨向塊材現象以形狀異向性為主要因素。隨著厚度增加殘磁逐漸變大,因此越厚的鎳層需要更大能量才能磁化。 (4)鎳退吸附後In-situ量測L-MOKE還有磁性的現象是在13.4 ML以上才有,推測是電鍍厚度越厚,水溶液離子數變少,使得水溶液導電度不夠無法將鎳退吸附掉。
The electrodeposition of Ni on a Cu(100) electrode in diluted hydrochloric acid was investigated by means of cyclic voltammetry (CV), electrochemical scanning tunnelling microscopy (EC-STM) and electrochemical magneto-optic Kerr effect (EC-MOKE). Silver was used as the electrochemical reference electrode which belongs to one kind of pseudo-reference electrodes. With Ag reference electrode, the potential converted to normal hydrogen electrode (NHE) is about +80~130 mV. In pure supporting electrolyte (1 mM HCl), the typical current peak pair in the CV measurements corresponds to copper dissolution and re-deposition. Hydrogen evolution reaction (HER) starts at E=-800 mV (vs Ag). STM images show well right-angle steps for the adsorption of chloride anions from hydrochloric acid solutions. After adding 1 mM NiCl2, new peak pair appears at -1200 mV and -400 mV which correspond to nickel deposition and dissolution. Systematic investigation for different nickel thickness has been performed by depositing at -1200 mV for different period. The thickness has been calculated by integrating the area under the anodic dissolution peak which gives the total amount of charge passed on a surface area of the deposit.
Magnetic properties of Ni/Cu(100) was observed at the potential smaller than -700 mV. As the Ni thickness increases, it can be distributed three regions. (1) Under 1.52 ML: No magnetic hysteresis appears. This is due to too little Ni deposit and hydrogen evolution reaction. (2) 2.47~7.05 ML: Magnetic easy axis is out-of-plane. Perpendicular magnetic anisotropy appears. This is comparable with UHV system. (3) 13.4~29.0 ML: Magnetic easy axis changes to be in-plane due to the shape anisotropy. After sweeping to the potential for nickel dissolution, in-situ L-MOKE measurement shows that the magnetization remains for films thicker than 13.4 ML. This may be due to the lowered conductivity of the electrolyte.
[1] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries, Rep. Prog. Phys., 59, 1409-1458 (1996)
[2] W. J. M. de Jonge, P. J. H. Bloemen, and F. J. A. den Broeder,Ultrathin Magnetic Structures, Edited by J. A. C. Bland and B. Heinrich, Springer-Verlag, Berlin(1994)
[3] 胡裕民、黃榮俊,物理雙月刊,二十二卷六期,552 (2000)
[4] P. Andreyev, 微滑動磁頭技術推進高速行動硬碟的發展,電子工程專輯,125 (2005)
(http://www.eettaiwan.com/ART_8800316257_628626_TA_4523dd74.HTM)
[5] M. Wilms, M. Kruft, G. Bermes, and K. Wandelt, Rev. of Sci. Instrum. , 70, 9 (1999)
[6] F. Carcia, A.D. Meinhaldt, A. Suna, Appl. Phys. Lett., 47, 178 (1985)
[7] C.J. Lin, G.L. Gorman, C.H. Lee, R.F.C. Farrow, E.E. Marinero, H.V. Do, H. Notarys, J. Magn. Magn. Mater., 93, 194 (1991)
[8] A. J. Bard and L. R. Faulkner, Electrochemical methods Fundamentals and Applications, John Wiley & Son, Inc., New York (2001)
[9] 胡啟章,電化學原理與方法,五南圖書,台北(2002)
[10] P. Broekmann, M. Wilms, M. Kruft, C. Stuhlmann, and K. Wandelt, Journal of Electroanalytical Chemistry, 467,307-325(1999)
[11] 洪詩惠,國立中央大學化學所碩士論文(2004)
[12] B. D. Cullity, Introduction to Magnetism and Magnetic Materials, Addison Wesley, New York (1972); B. Schulz, R. Schwarzwald and K. BAberschke, Surf. Sci.,307, 1102-8(1994)
[13] C. Kittel, Introduction to Solid State Physics, 7th ed., John Wiley & Sons INC., New York(1996)
[14] 何慧瑩,國立臺灣師範大學物理所碩士論文(1998)
[15] 魏淑宜,國立臺灣師範大學物理所碩士論文(2007)
[16] B. Schulz and K. Baberschke, Phys. Rev. B , 50, 13467-71(1994)
[17] 蔡志申,物理雙月刊,二十二券五期,605 (2003)
[18] J. D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons INC., New York, 219-221(1998)
[19] 楊正旭,私立輔仁大學物理所碩士論文(1999)
[20] 聶亨芸,國立清華大學材料科學工程所碩士論文(2002)
[21] 田福助,電化學-理論與應用,高立圖書有限公司,台灣(1987)
[22] P. Allongue et al., Surf. Sci. 603, 1831-1840(2009)
[23] 吳和虔,國立中央大學化學所碩士論文(2001)
[24] K. M. Poduska and S. Morin, Rev. of Sci. Instrum., 74, 11(2003)
[25] C. A. F. Vaz, J. A. C. Bland and G. Lauhoff, Rep. Prog. Phys., 71, 056501(2008)
[26] 白鴻陞,國立中正大學物理所碩士論文(2007)
[27] S. Huemann, N. T. M. Hai, P. Broekmann, and K. Wandelt, J. Phys. Chem. B, 110, 24955-24963(2006)
[28] 李育鴻,國立臺灣師範大學物理所碩士論文(2008)
[29] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 2nd ed., National Association of Corrosion Engineers, Houston, Texas, USA, 333(1974)