簡易檢索 / 詳目顯示

研究生: 胡書菱
Hu, Shu-Ling
論文名稱: 發酵乳桿菌Lactobacillus fermentum對降低成年男性抽菸頻率之效用:一項隨機單盲交叉試驗研究
Efficacy of Lactobacillus fermentum on Reducing Smoking Frequency in Adult Males: A Randomized Single-Blind Crossover Trial
指導教授: 吳啟豪
Wu, Chi-Hao
口試委員: 葉宛儒 楊素卿 吳啟豪
口試日期: 2021/10/18
學位類別: 碩士
Master
系所名稱: 營養科學碩士學位學程
Graduate Program of Nutrition Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 84
中文關鍵詞: 多巴胺發酵乳桿菌尼古丁精神益生菌吸菸頻率
英文關鍵詞: dopamine, Lactobacillus fermentum, nicotine, psychobiotics, smoking frequency
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101524
論文種類: 學術論文
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 香菸中的尼古丁 (nicotine)會刺激大腦中神經傳導物質多巴胺 (dopamine)釋放,使吸菸者獲得滿足感,因而調節腦中多巴胺濃度為目前戒菸療法之主要作用途徑。有鑑於精神益生菌 (psychobiotics)可藉腸腦軸線 (gut-brain axis)調控腦部神經傳導物質之釋放,繼而影響宿主的情緒及相關認知行為,因此本研究目的在於探討補充益生菌Lactobacillus fermentum GKF3是否能改善吸菸者之吸菸頻率。本研究採隨機單盲交叉對照模式 (a randomized single-blind crossover trial),招募45名無重大疾病且無酗酒、睡眠障礙及憂鬱狀態之成年男性吸菸者,將受試者隨機區分為安慰劑組 (placebo group)及GKF3組 (GKF3 group),連續給予四週安慰劑或GKF3樣品,再通過兩週洗除期 (washout period),交叉對調給予不同樣品連續四週。試驗期間受試者定期接受尼古丁成癮度量表 (Fagerstrom Test for Nicotine Dependence, FTND)、24小時飲食紀錄 (24-hour diet recall)以及國際身體活動量表 (International Physical Activity Questionnaire, IPAQ)之問卷調查,以評估其菸癮程度、營養素攝取及身體活動量。本研究亦分析受試者尿液中三種尼古丁之主要代謝物 nicotine, cotinine 及 trans-3’-hydroxycotinine (T3HC)濃度,以評估試驗前後之吸菸量變化。同時,分析血清左多巴 (L-3,4-dihydroxyphenylalanine, L-DOPA)以評估GKF3是否具有生成L-DOPA之活性;分析血漿丙二醛 (malondialdehyde, MDA)與蛋白質羰基 (protein carbonyl group),以作為體內氧化壓力之指標。試驗結果顯示,受試者於試驗期間之營養素攝取、身體活動量及基本血液生化數值,兩組間皆無顯著差異 (p>0.05)。試驗前後尿液尼古丁代謝物濃度變化,GKF3組受試者之下降率 (67 %)顯著低於安慰劑組 (36 %, p = 0.0031)。兩項氧化壓力指標物及L-DOPA濃度,兩組受試者於試驗前後均無顯著差異 (p > 0.05)。綜合上述,本研究證實補充Lactobacillus fermentum GKF3益生菌連續四週具有降低成年男性吸菸者吸菸頻率之效用,可能具有精神益生菌之特性,未來具有發展為戒菸輔助療法之潛力。

    The nicotine in cigarette could stimulate the release of dopamine in the brain. Smokers may achieve the feeling of satisfaction after smoking by the release of dopamine. Thus, regulating dopamine in the brain to reduce the craving of smoking is the main mechanism of current smoking cessation therapy. Given that recent studies showed that psychobiotics could regulate the neurotransmitters via gut-brain axis and affect emotion and cognitive behavior of host. The aim of the study is to identify whether supplementing of the probiotic GKF3 could improve the craving of smoking and reduce smokers’ smoking frequency or not. A randomized single-blind crossover trial was adopted to collect the data. A total of 45 adult male smokers were recruited without having major disease, alcoholism, sleeping disorder and depression. Eligible subjects were randomly divided into the placebo group and the GKF3 group. Each subject has been required to take the placebo or GKF3 capsule for four weeks, and then after a two-week washout period, exchange and give a different sample for another four weeks. During the trial, using Fagerstrom Test for Nicotine Dependence (FTND), 24-hour diet recall, and International Physical Activity Questionnaire (IPAQ) to assess the level of nicotine addiction, nutrient intake and activity level in subject regularly. The study also analyzed the level of urinary nicotine metabolites (nicotine, cotinine & trans-3'-hydroxycotinine) to assess the change of smoking frequency after taking the sample. Analyzed the serum L-DOPA (L-3,4-dihydroxyphenylalanine) to evaluate whether GKF3 has the ability to synthesis L-DOPA or not. Futhermore, analyzed plasma malondialdehyde (MDA) and plasma protein carbonyl to evaluate the level of oxidative stress in subjects. The results revealed that there was no significant change in nutrient intake, activity level and blood
    routine in subjects (p > 0.05). The level of urinary nicotine metabolites were significantly decreased in the GKF3 group (67%) and the percentage reduction of urinary nicotine metabolites was also significantly higher than the placebo group (36 %, p = 0.0031). There wasn’t significant difference between two groups of subjects before and after the study for the two indicators of oxidative stress and the level of L-DOPA (p > 0.05). In summary, the study showed that taking Lactobacillus fermentum GKF3 for four weeks has the effect of reducing the frequency of smoking among adult male smokers. It may have the properties of psychobiotics and has the potential to develop into an adjuvant therapy for smoking cessation in the future.

    謝誌 i 摘要 ii Abstract iv 目次 vi 圖次 viii 表次 ix 縮寫對照表 x 前言 1 第一章 文獻回顧 3 第一節 吸菸行為之相關探討 3 第二節 尼古丁代謝與成癮機制 5 第三節 吸菸與氧化壓力之關聯 10 第四節 腸道菌群與益生菌 11 第五節 發酵乳桿菌介紹 16 第二章 研究目的 18 第三章 研究架構 19 第四章 研究方法 20 第一節 試驗對象 20 第二節 試驗分組及實驗流程 21 第三節 研究工具 22 第四節 統計分析 30 第五章 研究結果 31 第一節 受試者基本資料 31 第二節 Lactobacillus fermentum GKF3對尼古丁成癮分數及吸菸頻率之影響 32 第三節 Lactobacillus fermentum GKF3對多巴胺前驅物—L-DOPA含量之影響 35 第四節 Lactobacillus fermentum GKF3對血液氧化壓力指標之影響 35 第五節 不良事件反應數 36 第六章 討論 37 第七章 結論 44 參考文獻 55 附錄 68

    衛生福利部國民健康署。菸害防制。https://www.hpa.gov.tw/Pages/List.aspx?nodeid=41. [Accessed 16 Sep 2021]
    Allen, A., Hutch, W., Borre, Y. et al. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry.2016; 6, e939.
    Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43:1731–1737.
    Bailey MT, Cryan JF. The microbiome as a key regulator of brain, behavior and immunity: Commentary on the 2017 named series. Brain Behav Immun. 2017;66:18–22.
    Belizário JE, Faintuch J. Microbiome and gut dysbiosis. Exp Suppl. 2018;109:459–476.
    Benowitz NL. Neurobiology of nicotine addiction: implications for smoking cessation treatment. Am J Med. 2008;121:S3–S10.
    Benowitz NL. Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol. 2009;49:57–71.
    Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;29–60.
    Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362(24):2295–2303.
    Benowitz NL. Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther. 2008;83:531-541.
    Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;29–60.
    Benowitz NL, St Helen G, Nardone N, Cox LS, Jacob P. Urine metabolites for estimating daily intake of nicotine from cigarette smoking. Nicotine Tob Res. 2020;22:288–292.
    Bierut LJ, Stitzel JA, Wang JC, et al. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry. 2008;165:1163–1171.
    Boyd JH, Weissman MM, Thompson WD, Myers JK. Screening for depression in a community sample. Understanding the discrepancies between depression symptom and diagnostic scales. Arch Gen Psychiatry. 1982;39(10):1195–1200.
    Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–16055.
    Bruno RS, Traber MG. Vitamin E biokinetics, oxidative stress and cigarette smoking. Pathophysiology. 2006;13:143–149.
    Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease. Integr Med (Encinitas). 2014;13:17–22.
    Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213.
    Chávez J, Cano C, Souki A, et al. Effect of cigarette smoking on the oxidant/antioxidant balance in healthy subjects. Am J Ther. 2007;14:189–193.
    Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 2021;13:2099.
    Dalle-Donne I, Colombo G, Gornati R, et al. Protein carbonylation in human smokers and mammalian models of exposure to cigarette smoke: focus on redox proteomic studies. Antioxid Redox signal. 2017;26:406–426.
    Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508:1–12.
    De Cremer K, Van Overmeire I, Van Loco J. On-line solid-phase extraction with ultra performance liquid chromatography and tandem mass spectrometry for the detection of nicotine, cotinine and trans-3'-hydroxycotinine in urine to strengthen human biomonitoring and smoking cessation studies. J Pharm Biomed Anal. 2013;76:126–133.
    De Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1–66.
    Dempsey D, Jacob P 3rd, Benowitz NL. Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther. 2002;301:594–598.
    Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170:1179–1188.
    Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74:720–726.
    Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–431.
    Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64:327–337.
    Ebbert JO, Wyatt KD, Hays JT, Klee EW, Hurt RD. Varenicline for smoking cessation: efficacy, safety, and treatment recommendations. Patient Prefer Adherence. 2010;4:355–362.
    Eisenhofer G, Aneman A, Friberg P, et al. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab. 1997;82:3864–3871.
    Elizabeth O. Adedokun, Irfan A. Rather, Vivek K. Bajpai & Yong-Ha Park. Biocontrol efficacy of Lactobacillus fermentum YML014 against food spoilage moulds using the tomato puree model. Frontiers in Life Science. 2016; 9:1, 64–68.
    Etter JF, Duc TV, Perneger TV. Validity of the Fagerström test for nicotine dependence and of the Heaviness of Smoking Index among relatively light smokers. Addiction. 1999;94:269–281.
    Fearon IM, Faux SP. Oxidative stress and cardiovascular disease: novel tools give (free) radical insight [published correction appears in J Mol Cell Cardiol. 2009 Nov;47(5):748]. J Mol Cell Cardiol. 2009;47:372–381.
    Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. 2014;11:4745–4767.
    Food and Agriculture Organization and World Health Organization Expert Consultation. Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Córdoba, Argentina: Food and Agriculture Organization of the United Nations and World Health Organization; 2001. [Accessed 19 September 2021]. Available from: ftp://ftp.fao.org/es/esn/food/probio_report_en.pdf.
    Foley TE, Fleshner M. Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med. 2008;10:67–80.
    Harris JE, Thun MJ, Mondul AM, Calle EE. Cigarette tar yields in relation to mortality from lung cancer in the cancer prevention study II prospective cohort, 1982–8. BMJ. 2004;328:72.
    Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. Br J Addict. 1991;86:1119–1127.
    Hill, C., Guarner, F., Reid, G. et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11, 506–514.
    Hoffmann D, Djordjevic MV, Hoffmann I. The changing cigarette. Prev Med. 1997;26:427–434.
    Hughes JR, Keely J, Naud S. Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction. 2004;99:29–38.
    Hukkanen J, Jacob P 3rd, Benowitz NL. Effect of grapefruit juice on cytochrome P450 2A6 and nicotine renal clearance. Clin Pharmacol Ther. 2006;80:522–530.
    Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57:79–115.
    Isik B, Ceylan A, Isik R. Oxidative stress in smokers and non-smokers. Inhal Toxicol. 2007;19:767–769.
    Jain S, Tarun R, Bomb BS, Singh PP. Tobacco users are at greater risk of free radical injury. Plasma ascorbic acid and alpha tocopherol in bidi smokers and tobacco users. Free radicals and antioxidants in health and disease: Concordance and discordance. Chaudhary offset print, Udaipur, India, 2007.
    Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787–8803.
    Jarvis MJ, Boreham R, Primatesta P, Feyerabend C, Bryant A. Nicotine yield from machine-smoked cigarettes and nicotine intakes in smokers: evidence from a representative population survey. J Natl Cancer Inst. 2001;93:134–138.
    Jha P, Peto R. Global effects of smoking, of quitting, and of taxing tobacco. N Engl J Med. 2014;370:60–68.
    Jong-Hwan, Park Yeonhee, Lee Enpyo, Moon Seung-Hyeok, Seok Min-Won et al. Safety assessment of Lactobacillus fermentum PL9005, a potential probiotic lactic acid bacterium in mice. Journal of Microbiology and Biotechnology. 2015;15: 603–608.
    Johnstone E, Benowitz N, Cargill A, et al. Determinants of the rate of nicotine metabolism and effects on smoking behavior. Clin Pharmacol Ther. 2006;80:319–330.
    Jolma CD, Samson RA, Klewer SE, Donnerstein RL, Goldberg SJ. Acute cardiac effects of nicotine in healthy young adults. Echocardiography. 2002;19:443–448.
    Kalra J, Chaudhary AK, Prasad K. Increased production of oxygen free radicals in cigarette smokers. Int J Exp Pathol. 1991;72:1–7.
    Kahouli I, Malhotra M, Westfall S, Alaoui-Jamali MA, Prakash S. Design and validation of an orally administrated active L. fermentum-L. acidophilus probiotic formulation using colorectal cancer Apc Min/+ mouse model. Appl Microbiol Biotechnol. 2017;101:1999–2019.
    Kamceva G, Arsova-Sarafinovska Z, Ruskovska T, Zdravkovska M, Kamceva-Panova L, Stikova e. cigarette smoking and oxidative stress in patients with coronary artery disease. Open Access Maced J Med Sci. 2016;4:636–640.
    Kenny PJ, Markou A. Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. J Neurosci. 2005;25:6208–6212.
    Kechagia M, Basoulis D, Konstantopoulou S, et al. Health benefits of probiotics: a review. ISRN Nutr. 2013;2013:481–651.
    Kim BK, Lee IO, Tan PL, Eor JY, Hwang JK, Kim SH. Protective effect of Lactobacillus fermentum LA12 in an alcohol-induced rat model of alcoholic steatohepatitis. Korean J Food Sci Anim Resour. 2017;37:931–939.
    Kong Y, Olejar KJ, On SLW, Chelikani V. The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract. antioxidants (basel). 2020;9:610.
    Konstantinou E, Fotopoulou F, Drosos A, et al. Tobacco-specific nitrosamines: A literature review. Food Chem Toxicol. 2018;118:198–203.
    Kurt AG, Aytan E, Ozer U, Ates B, Geckil H. Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene. Biotechnol J. 2009;4:1077–1088.
    Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: A population-based prevalence study. JAMA. 2000;284:2606–2610.
    Le Houezec J. Role of nicotine pharmacokinetics in nicotine addiction and nicotine replacement therapy: a review. Int J Tuberc Lung Dis. 2003;7:811–819.
    Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8:115.
    Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 2015;310:561–577.
    Liu YW, Liu WH, Wu CC, et al. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res. 2016;1631:1–12.
    Luqman A, Nega M, Nguyen MT, Ebner P, Götz F. SadA-expressing Staphylococci in the human gut show increased cell adherence and internalization. Cell Rep. 2018;22:535–545.
    Ma H, Zhu G. The dopamine system and alcohol dependence [published correction appears in Shanghai Arch Psychiatry. 2014;26(3):156]. Shanghai Arch Psychiatry. 2014;26:61–68.
    Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125:926–938.
    Messaoudi M, Lalonde R, Violle N, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105:755–764.
    Mills EJ, Wu P, Lockhart I, Wilson K, Ebbert JO. Adverse events associated with nicotine replacement therapy (NRT) for smoking cessation. A systematic review and meta-analysis of one hundred and twenty studies involving 177,390 individuals. Tob Induc Dis. 2010;8:8.
    Molander L, Hansson A, Lunell E, Alainentalo L, Hoffmann M, Larsson R. Pharmacokinetics of nicotine in kidney failure. Clin Pharmacol Ther. 2000;68:250–260.
    Murphy SE. Nicotine metabolism and smoking: Ethnic differences in the role of P450 2A6. Chem Res Toxicol. 2017;30:410–419.
    Naghmouchi K, Belguesmia Y, Bendali F, Spano G, Seal BS, Drider D. Lactobacillus fermentum: a bacterial species with potential for food preservation and biomedical applications. Crit Rev Food Sci Nutr. 2020;60:3387–3399.
    Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem. 1997;43:1209–1214.
    Office of the Surgeon General (US); Office on Smoking and Health (US). The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2004.
    Pérez-Cano FJ, Dong H, Yaqoob P. In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Immunobiology. 2010;215:996–1004.
    Pirie K, Peto R, Reeves GK, Green J, Beral V; Million Women Study Collaborators. The 21st century hazards of smoking and benefits of stopping: a prospective study of one million women in the UK. Lancet. 2013;381:133–141.
    Pisinger C, Godtfredsen NS. Is there a health benefit of reduced tobacco consumption? A systematic review. Nicotine Tob Res. 2007;9:631–646.
    Prochaska JJ, Benowitz NL. Current advances in research in treatment and recovery: Nicotine addiction. Sci Adv. 2019;5:eaay9763.
    Puri BK, Treasaden IH, Cocchi M, Tsaluchidu S, Tonello L, Ross BM. A comparison of oxidative stress in smokers and non-smokers: an in vivo human quantitative study of n-3 lipid peroxidation. BMC Psychiatry. 2008;8 Suppl 1:S4.
    Sanders ME, Akkermans LM, Haller D, et al. Safety assessment of probiotics for human use. Gut Microbes. 2010;1:164–185.
    Saunders JB, Aasland OG, Babor TF, de la Fuente JR, Grant M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption--II. Addiction. 1993;88:791–804.
    Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil. 2014;26:1615–1627.
    Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 2003;25:207–218.
    Stapleton JA, West R. A direct method and ICER tables for the estimation of the cost-effectiveness of smoking cessation interventions in general populations: Application to a new cytisine trial and other examples. Nicotine Tob Res. 2012;14:463–471.
    Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133.
    Surwase SN, Jadhav JP. Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids. 2011;41:495–506.
    Tambasco N, Romoli M, Calabresi P. Levodopa in parkinson's disease: current status and future developments. Curr Neuropharmacol. 2018;16:1239–1252.
    Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–1836.
    Tseng PT, Jeng JS, Zeng BS, et al. Efficacy of non-invasive brain stimulation interventions in reducing smoking frequency in patients with nicotine dependence: A systematic review and network meta-analysis of randomized controlled trials [published online ahead of print, 2021 Aug 4]. Addiction. 2021;10.1111/add.15624.
    Vangeli E, Stapleton J, Smit ES, Borland R, West R. Predictors of attempts to stop smoking and their success in adult general population samples: a systematic review. Addiction. 2011;106:2110–2121.
    Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15:37–46.
    Wadgave U, Nagesh L. Nicotine replacement therapy: an overview. Int J Health Sci (Qassim). 2016;10:425–435.
    Wang Y, Tong Q, Ma SR, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson's disease by regulating gut microbiota. Signal Transduct Target Ther. 2021;6:77.
    West R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol Health. 2017;32:1018–1036.
    West R., & Shiffman S. Smoking cessation (3rd ed.). Abingdon: Health Press. 2016. https://thorax.bmj.com/content/55/12/987.short. Accessed 16 Sep 2021.
    West NP, Pyne DB, Cripps AW, et al. Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutr J. 2011;10:30.
    Wilkes S. The use of bupropion SR in cigarette smoking cessation. Int J Chron Obstruct Pulmon Dis. 2008;3:45–53.
    World Health Organization, Global Health Observatory Data Repository. Prevalence of smoking, male is the percentage of men ages 15 and over who currently smoke any tobacco product on a daily or non-daily basis. Retrieved from http://apps.who.int/ghodata/ [Accessed 2021.08.23]
    World Health Organization. WHO report on the global tobacco epidemic, 2017: monitoring tobacco use and prevention policies. Geneva: World Health Organization; 2017. https://www.who.int/tobacco/global_report/2017/en. [Accessed 16 Sep 2021]
    Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 1997;20:92–98.
    Yadav R, Khan SH, Mada SB, Meena S, Kapila R, Kapila S. Consumption of probiotic Lactobacillus fermentum MTCC: 5898-fermented milk attenuates dyslipidemia, oxidative stress, and inflammation in male rats fed on cholesterol-enriched diet. Probiotics Antimicrob Proteins. 2019;11:509–518.
    Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis [published correction appears in Cell. 2015 Sep 24;163:258]. Cell. 2015;161:264–276.
    Yang LZ, Yang Z, Zhang X. Non-invasive Brain stimulation for the treatment of nicotine addiction: potential and challenges. Neurosci Bull. 2016;32:550–556.
    Yujun Huang, Hengxian Qu, Dong Liu, Yunchao Wa, Jian Sang et al. The effect of Lactobacillus fermentum DALI02 in reducing the oxidative stress and inflammatory response induced by high-fat diet of rats. 2020. Manuscript submitted for publication.
    Zandy M, Chang V, Rao DP, Do MT. Tobacco smoke exposure and sleep: estimating the association of urinary cotinine with sleep quality. Exposition à la fumée du tabac et sommeil : estimation de l’association entre concentration de cotinine urinaire et qualité du sommeil. Health Promot Chronic Dis Prev Can. 2020;40:70–80.
    Zevin S, Saunders S, Gourlay SG, Jacob P, Benowitz NL. Cardiovascular effects of carbon monoxide and cigarette smoking. J Am Coll Cardiol. 2001;38:1633–1638.
    Zhou X, Nonnemaker J, Sherrill B, Gilsenan AW, Coste F, West R. Attempts to quit smoking and relapse: factors associated with success or failure from the ATTEMPT cohort study. Addict Behav. 2009;34:365–373.

    無法下載圖示 電子全文延後公開
    2026/10/18
    QR CODE