簡易檢索 / 詳目顯示

研究生: 王昭明
Wang Chao-Ming
論文名稱: 工作圖閱讀與理解歷程之研究
A Study of Reading and Comprehension Process of Working Drawing
指導教授: 鍾瑞國
Chung, Ruey-Gwo
田振榮
Tien, Chen-Jung
學位類別: 博士
Doctor
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 312
中文關鍵詞: 工作圖讀圖理解認知負荷先前知識
英文關鍵詞: the working drawing, reading drawing, comprehension, cognition load, prior knowledge
論文種類: 學術論文
相關次數: 點閱:217下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究主要目的在探討工作圖閱讀與理解歷程,以及先前知識和工作圖圖形結構具體化程度對受試者在閱讀急回機構工作圖時的影響,同時也探討受試者參照不同的圖形結構具體化工作圖對認知負荷的影響。
    本研究對象為技術學院自動化控制工程學系四技一年級學生。利用2×2變異數分析考驗工作圖解題歷程與結果。並抽取16位受試者進行急回機構工作圖有聲思考與深度訪談。
    經過資料分析,歸結本研究的結論條列如下:
    一、增加工作圖圖形結構之具體化可促進學習者理解工作圖內在涵義。
    二、先前知識與工作圖圖形結構具體化程度只對工作圖「圖形結構情境」產生交互作用。
    三、多重、參照工作圖之讀圖,對低先前知識者並未產生分心效果。
    四、分離之高具體化圖形之工作圖,對高先前知識者未產生累贅效果。
    五、具備主動件與從動件概念的受試者,並不代表具有完整的動力傳遞觀念。且因缺乏主動性之自我監控的能力,需藉助外在訊息修正錯誤行為。
    六、加工的概念建立在使用刀具對物體進行除料;圖形具體化程度對平面加工不具參照功用。
    七、高圖形結構具體化對配合概念形成優於低圖形結構具體化,其中又以參照動畫效果最佳,參照3D系統圖最差;具有高可見性的零件較隱藏性零件更容易被理解出配合程度。
    八、受試者在解題過程大多數以閱讀2D組合圖為主,甚少參照2D零件圖,通常由組合圖中將零件間「組合」視為配合。
    九、在急回機構工作圖閱讀與理解歷程所形成之迷思概念如下:
    (ㄧ)視可動件為主動件的迷思概念
    (二)將串聯零件視為牽動運動的迷思概念
    (三)將組合視為配合的迷思概念
    (四)不可視零件就沒有配合的迷思概念
    (五)皮帶輪圖像參照推論的迷思概念
    研究透過量化與質化的資料蒐集、分析、討論、及研究發現與結論,提出關於工作圖教學與教材設計和對未來研究的建議。

    Abstract
    The purposes of this study were aimed to explore the learners’ reading and comprehending process about working drawing and to realize the possible effects of prior knowledge and the concrete degree of figure composition on the objects when they read the quick-return mechanism working drawing. Moreover, the research approach also focused on the investigation of the possible effects of the objects’ referring to the various concretion degrees of the working drawing structures on their cognition load.
    The objects were selected from the first graders of the four-year program in a technological institute with a major in Automatic Control Engineering. By 2×2 variance analysis, the researcher examined the problem-solving process of working drawings and the results. Furthermore, sixteen objects were randomly selected for sampling from all those who were engaged in the problem solving for the quick-return mechanism working drawings by the in-depth interview and thinking aloud method.
    Major findings of the research were concluded as follows:
    1. The more concrete the working drawing structures presented the better the learners could realize the internal implications of the working drawings.
    2. The prior knowledge and the concrete degree of the working drawing structures held interactive relationship with the “drawing situation” of these working drawing.
    3. Either multiple or referring to working drawings showed no effects on the split-attention of those objects with low prior working drawing knowledge.
    4. The working drawings with separated but highly concrete degree caused no effects on the redundancy of those objects with high level of the prior working drawing knowledge.
    5. Those objects who possessed the concept of driver and follower motion performed no concepts of impetus transmission. They also needed external information to modify the errors occurred because of the lack of self-monitored abilities.
    6. The concept of processing was constructed for the cutting by machine tools. The concrete degree of the drawing composition generated no functional reference fro plane processing.
    7. The higher concrete degree of the drawing composition performed better fit to the conceptual formation than that of lower one. Among these, the effect of referring to 3D-Animation resulted in the best performance, while referring to 3D-System Drawing was the worst. The highly visible parts were easily observed and obtained better coordination with the concepts of symbolic schemas than those vague ones.
    8. Throughout the problem solving process, the objects seldom referred to 2D Part Drawings, while 2D Assembly Drawing did. The way of the parts combination with the assembly drawing was regarded as fit.
    9. The mis-concepts formed by the process of reading and comprehending the quick-returning mechanism working drawings was indicated as the following:
    (1) The mis-concept to regard the movable parts as the active parts
    (2) The mis-concept to regard the combination parts as the tugging movable parts
    (3) The mis-concept to regard combination as fit
    (4) The mis-concept to regard invisible parts as the ones of no fit
    (5) The mis-concept for referring ratiocination of pulley wheel figure
    According to the research purposes and conclusion, the researcher then proposed suggestions for instruction and teaching material design as well as further study in the future.

    目 錄 第一章 緒論 第一節 研究緣起與動機 1 第二節 研究目的與研究假設 7 第三節 研究範圍與限制 9 第四節 重要名詞解釋 11 第二章 文獻探討 第一節 圖學知識論與空間思維歷程 15 第二節 雙編碼理論 47 第三節 物體心智模型 53 第四節 認知負荷理論 69 第三章 研究設計與實施 第一節 研究設計 81 第二節 研究對象 89 第三節 研究工具 91 第四節 實施程序 101 第五節 資料處理 105 第四章 研究結果與發現 第一節 技術學院自動化控制系學生工作圖閱讀相關變項資料 109 第二節 工作圖圖形結構具體化程度與先前知識對工作圖閱讀 與理解之影響 117 第三節 工作圖閱讀與理解成就測驗之前期與後期的關係 123 第四節 急回機構工作圖解題思維歷程之分析 129 第五章 合討論、結論與建議 第一節 合討論 183 第二節 結論 199 第三節 建議 207 參考文獻 213 附錄 附錄一 搖擺機構工作圖閱讀理解成就測驗 225 附錄二 「工作圖先前知識能力測驗」、「急回機構工作圖閱 讀理解成就測驗」、「搖擺機構工作圖閱讀理解成就 測驗」、暨「急回機構工作圖」與「搖擺機構工作圖 」關連性問卷審查名單 228 附錄三 「搖擺機構工作圖」試題難度、鑑別度、決斷值、與 信度分析 229 附錄四 搖擺機構工作圖教材 230 附錄五 「急回機構工作圖閱讀與理解所需具備之知能項目」 調查統計分析 233 附錄六 「急回機構工作圖閱讀理解成就測驗」正式卷 236 附錄七 急回機構工作圖教材 241 附錄八 「搖擺機構工作圖」和「急回機構工作圖」在讀圖上 相似程度 244 附錄九 「急回機構工作圖」試題難度、鑑別度、決斷值、與 信度分析 246 附錄十 「工作圖先前知識能力測驗」正式卷 247 附錄十一 「工作圖先前知識能力測驗」雙向細目表 252 附錄十二 「工作圖先前知識能力測驗」試題難度、鑑別度、 決斷值、與總分之相關 253 附錄十三 急回機構工作圖有聲思考與深度訪談測驗卷 254 附錄十四 急回機構工作圖3D動畫 257 附錄十五 急回機構工作圖3D組合圖 258 附錄十六 急回機構工作圖3D系統圖 259 附錄十七 急回機構工作圖3D實物 260 附錄十八 急回機構工作圖有聲思考與深度訪談口語資料文字 稿 261 表 目 次 表2-1-1 皮亞傑的知識區類型分類表 26 表2-1-2 五種圖學知識之分類表 28 表2-1-3 「正投影視圖之識圖」對工作圖閱讀與理解之重要項目 31 表2-1-4 「標準元件之識圖與規格」對工作圖閱讀與理解之重要項目 32 表2-1-5 「機械加工與機構作動方式之識圖」對工作圖閱讀與理解之 重要項目 33 表2-3-1 正投影一致性作業實驗結果 61 表2-4-1 認知負荷測量方法統計表 75 表3-1-1 提昇讀圖能力前置作業與實驗處理時程分配表 84 表3-2-1 急回機構工作圖閱讀與理解成就測驗之樣本人數 89 表3-2-2 急回機構工作圖有聲思考與深度訪談樣本人數 90 表3-3-1 全體人員對「正投影視圖之識圖」、「標準元件之識圖與規 格」、及「機械加工與機構作動方式之識圖」三大類的項目 之意見一致性考驗分析表 91 表3-3-2 「正投影視圖之識圖」各項目統計等級分析表 92 表3-3-3 「標準元件之識圖與規格」各項目統計等級分析表 92 表3-3-4 「機械加工與機構作動方式之識圖」各項目統計等級分析 表 93 表4-1-1 搖擺機構工作圖閱讀成就測驗的平均數與標準差 108 表4-1-2 工作圖先前知識得分的平均數與標準差 109 表4-1-3 急回機構工作圖閱讀與理解成就測驗得分的平均數與標 準差 110 表4-1-4 認知負荷量表得分的平均數與標準差 112 表4-1-5 全體受試者對工作圖圖形結構具體化的認知負荷、圖形 辦識基礎問題、圖形結構情境問題的統計表 113 表4-2-1 高低先前知識者對急回機構工作圖高與低圖形結構具體 化教材所表現之「認知負荷」的二因子變異數分析 115 表4-2-2 先前知識和圖形結構具體化之認知負荷得分 116 表4-2-3 高低先前知識者對急回機構工作圖高與低圖形結構具體 化教材所表現之「圖形辨識基礎問題」的二因子變異數 分析 117 表4-2-4 工作圖先前知識和圖形結構具體化之圖形辨識基礎問題 和圖形結構情境問題得分 117 表4-2-5 高低先前知識者對急回機構工作圖高與低圖形結構具體 化教材所表現之「圖形結構情境問題」的二因子變異數 分析 118 表4-2-6 先前知識與圖形結構具體化二因子變異數單純主要效果 分析摘要表 119 表4-3-1 11位專家在搖擺機構和急回機構工作圖讀圖相似程度統 計表 122 表4-3-2 11位專家對急回與搖擺機構ㄧ致性Kappa考驗 123 表4-3-3 搖擺機構與急回機構工作圖閱讀理解成就測驗之「圖形辨 識基礎」、「圖形結構情境」與「總分」之相關 124 表4-3-4 前期的搖擺機構工作圖成就測驗對後期之急回機構工作圖 組別之區別分析摘要表 125 表4-3-5 前期的搖擺機構工作圖成就測驗對後期之急回機構工作圖 組別之預測正確率摘要表 126 表4-4-1 接受有聲思考與深度訪談學生名單 128 表4-4-2 急回機構有聲思考與深度訪談使用代號 129 表4-4-3 急回機構有聲思考與深度訪談概念架構 130 表4-4-4 急回機構工作圖各相關零件間的配合統計表 133 表4-4-5 十六位受試者對及回機構工作圖運動原理口語資料分析 135 表4-4-6 急回機構動力傳遞所牽動之零件分析表 139 表4-4-7 16位受試者對零件1加工平面概念分析表 147 表4-4-8 零件1平面加工法次數統計 149 表4-4-9 16位受試者對零件機構再設計概念分析 151 表4-4-10 16位受試者對及回機構各零件間配合統計表 152 表4-4-11 16位受試者對16項相配合零件之次數統計表 153 表4-4-12 16位受試者對急回機構細鏈線圓之理解統計表 160 表4-4-13 16位受試者對急回機構各零件間配合統計表 165 表4-4-14 16位受試者對急回機構三零件間相互配合口語資料表 168 表4-4-15 可視處與不可視處配合被正確指出之人數統計表 169 圖 目 次 圖2-1-1 圖學圓形示意圖 20 圖2-1-2 人類認識流程圖 21 圖2-1-3 認識作用圖 23 圖2-2-1 Paivio雙編碼模式 47 圖2-3-1 Norman的心智模型示意圖 56 圖2-3-2 Johnson-Laird 的心智模型示意圖 56 圖2-3-3 工作圖閱讀理解心智模式示意圖 57 圖2-4-2 多維度的認知負荷構念之基模表徵示意圖 71 圖3-1-1 研究架構圖 81 圖3-1-2 研究流程 82 圖4-4-1 零件1平面加工示意圖 146 圖4-4-2 六角螺釘與彈簧墊圈組合示意圖 164 圖4-4-3 急回機構主動件傳動示意圖 164 圖4-4-4 急回機構細鏈線的意義示意圖 170

    參考文獻
    王建造(民81)。「學生認知發展、思考規則與逆思解題之研究」。彰化師範大學學報,3,261-270。
    王昭明(民82)。解題歷程研究法--有聲思考法簡介。台灣教育,512,53-57。
    王昭明(民83)。腳本分析法在解題歷程研究之應用。技術及職業教育,19,40-44。
    王昭明(民84)。圖學教學評量工具之探討。技術學刊,10(4),405-412。
    王昭明(民85)。圖學解題策略之分析研究。台北:全華科技圖書股份有限公司。
    王昭明(民86)。圖學解題策略之分析。技術學刊,12(1),7-14。
    王昭明(民88)。五專學生對機械製圖之工作圖的認知建構過程之研究。中州工商專科學校教師研究計劃成果報告,1,31-34。
    王昭明(民90)。五專學生對電腦輔助機械製圖中工作圖讀圖與識圖的解題思維歷程之研究。行政院國家科學委員會專題研究計畫成果報告, NSC 89-2511-S-235-001。
    王昭明、林義傑、林柏宏、曾俊立、郭鎮岳、和柯伸翰(民85)。圖學解題行為分析。私立中州工商專校機械工程科,專題報告,未出版。
    王昭明、許正雄(民87)。知識論在工程上的應用。私立中州工商專校機械工程科,專題報告,未出版。
    王昭明、戴龍、邱昭閔、顏詒慶、和曹志成(民86)。丙級機械製圖技術士技能檢定試題分析。私立中州工商專校機械工程科,專題報告,未出版。
    王昭明、鐘麗玲、賴敏菁、和施錦鳳(民86)。合理尺寸標註之探討。私立中州工商專校機械工程科,專題報告,未出版。
    王昭明、鐘麗娟、鄭恬恬、程恆妤、王章麟(民85)。本校機械科一年級新生推理能力之探討。私立中州工商專校機械工程科,專題報告,未出版。
    王輔春、楊永然、朱鳳傳、康鳳梅(民73)。工程圖學辭典。台北:中央圖書出版社。
    江巧如(民84)。從二度空間平面訊息建構三度空間立體模型之聯對歷程探討。國立中正大學心理學研究所碩士論文,未出版。
    行政院勞工委員會。「電腦輔助機械製圖丙級技能檢定學科測驗參考資料」。民國93年11月22日,取自http://www.labor.gov.tw/。
    行政院勞工委員會。「機械製圖丙級技能檢定學科測驗參考資料」。民國93年11月22日,取自http://www.labor.gov.tw/。
    何佳燕(民91)。探討粒子概念對國二學生學習溫度與熱的學習成效與心智模式之影響。國立台灣師範大學科學教育研究所碩士論文,未出版。
    余秀麗(民92)。探討國中三年級學生對於重力概念之瞭解急心智模式。國立台灣師範大學科學教育研究所在職進修碩士班,碩士論文,未出版。
    吳明清(民80)。教育研究:基本觀念與方法之分析。台北:五南。
    吳武雄(民70)。國中學生認知發展與科學及數學課程學習之相關研究。教育學院學報,6,258-281。
    吳雅慧(民87)。工作記憶容量與3D心像模型關係之探討。國立中正大學心理學研究所碩士論文,未出版。
    吳煥昌(民90)。高工機械製圖科學生空間能力與展開圖學習成就之相關研究。國立台灣師範大學工業教育系碩士論文,未出版。
    宋曜廷(民89)。先前知識、文章結構和多媒體呈現對文章學習的影響。國立台灣師範大學教育心理與輔導學系,博士論文,未出版。
    李達權、李維華、魏義峰(民91)。機械製圖乙級技能檢定術科題目題解。台北:全華。
    杜聲鋒(民77)。皮亞傑及其思想。台北:遠流。
    林玉體(民75)。西洋教育史。臺北:文景書局。
    洪偉肯(民87)。不同程度深度線索在電腦3D環境中空間方位判斷績效研究。雲林科技大學工業設計技術研究所碩士論文,未出版。
    徐易稜(民90)。多媒體呈現方式對學習者認知負荷與學習成效之影響研究。國立中央大學資訊管理研究所,碩士論文,未出版。
    柴熙(民80)。認識論。台北:商務。
    翁嘉鴻(民90)。以認知負荷觀點探討聽覺媒體物件之媒體呈現方式對學習成效之影響。國立中央大學資訊管理研究所,碩士論文,未出版。
    高廣孚(民78)。哲學概論。五南出版社。
    康鳳梅(民89)。高工學生機械製圖空間能力與問題解決能力提昇之研究。國立台灣師範大學工業教育系
    康鳳梅(民92)。高工學生空間能力指標之研究(1/2)。行政院國家科學委員會專題研究計畫成果報告,NSC91-2516-S-003-007。
    康鳳梅(民93)。 我國學生空間能力提昇之研究-高中職學生空間能力提昇之研究(1/2) 。行政院國家科學委員會專題研究計畫成果報告。
    康鳳梅、戴文雄(民84)。我國機械製圖技術人力所需知識建構之研究。行政院國家科學委員會專題研究計畫成果報告。
    康鳳梅、戴文雄(民90)。高工學生機械製圖(交線與展開)空間能力與問題解決能力提昇之研究。行政院國家科學委員會專題研究計畫成果報告,NSC89-2511-S-003-135。
    康鳳梅、鍾瑞國(民86)。提升五專學生解決工程製圖中正投影視圖問題能力之研究。行政院國家科學委員會專題研究計畫成果報告,NSC86-2516-S-003-002-TG。
    康鳳梅、鍾瑞國(民87)。我國大學機械相關系學生工程圖學剖視圖解題歷程之研究,行政院國家科學委員會專題研究計畫成果報告。
    康鳳梅、鍾瑞國(民89)。師範院校機械相關系學生工程圖學空間能力之研究。師大學報:科學教育類,45(1),59-71。
    康鳳梅、鍾瑞國、劉俊祥、和李金泉(民91)。高職機械製圖科學生空間能力差異之研究。師大學報:科學教育類,47(1),55-69。
    康鳳梅、簡慶郎、和詹秉鈞(民92)。工程圖交線電腦化創意教材提升學生空間能力之研究。師大學報:科學教育類,48(2),225-238。
    郭重吉(民81)。從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,20(5),545-570。
    郭璟諭(民92)。媒體組合方式與認知型態對學習成效與認知負荷的影響。國立中央大學資訊管理研究所,碩士論文,未出版。
    陳峰津(民71)。布魯納教育思想之研究。台北:台灣商務。
    陳烏土(民72)。機械製圖。台北:全華。
    游朝煌(民84)。大學學生空間能力、邏輯思考能力、不同補充教學策略及相關因素對程式設計學習成效影響之研究。國立彰化師範大學工業教育學系碩士論文,未出版。
    湯清二(民68)。高中學生具體操作及形式操作之推理能力研究。教育學院學報,4,480-494。
    黃克文(民85)。認知負荷與個人特質及學習成就之關聯。國立台北師範學院國民教育研究所碩士論文,未出版。
    黃曼麗(民69)。國中二、三年級學生具體操作及形式操作之推理能力研究。教育學院學報,5,195-207。
    黃曼麗(民72)。皮亞傑認知發展及大腦半球職司與大一學生理科學業成績間相關性研究。教育學院學報,8,741-748。
    經濟部中央標準局(民94)。中國國家標準(CNS)「工程製圖」。台北:經濟部中央標準局。
    葉學志(民74)。教育哲學。臺北:三民書局。
    詹秉鈞(民92)。以電腦輔助教材進行交線與展開圖教學對學生學習表現之研究。國立台灣師範大學工業教育系碩士論文,未出版。
    劉俊祥(民89)。機械製圖科學生空間能力與立體圖成就表現之相關研究,國立台灣師範大學工業教育研究所碩士論文,未出版。
    戴文雄(民82)。認知型態與空間觀念對機械製圖態度轉變與成效之研究。彰化師範大學學報,4,pp.171-209。
    戴文雄(民87)。不同正增強回饋型式電腦輔助教學系統對不同認知型態與空間能力高工學生機械製圖學習成效之研究(II)。行政院國家科學委員會專題研究計畫成果報告,NSC86-2516-S-018-010-TG。
    戴文雄(民90)。高工學生正投影空間能力與問題解決能力提昇之研究。行政院國家科學委員會專題研究計畫成果報告,NSC89-2511-S-018-036。
    薛任芳(民87)。平面視圖自動轉換立體模型之研究。中華大學工業工程與管理研究所碩士論文,未出版。
    薛廣紅(2004)。「現代工程圖學」教學大綱。民國93年11月18日取自http://jpkc.lzjtu.edu.cn/material1。
    Bell-Gredler, M. E. 。(民80)學習理論-學習心理學的取向(盧雪梅譯)。臺北:心理出版社。
    Bringuier, Jean-Claude(民83)。皮亞傑訪談錄(劉玉燕譯)。臺北:書泉出版社。
    Drucker, P.(民83)。後資本主義社會(傅振焜譯)。臺北:時報文化出版企業有限公司。
    Hergenhahn, B. R. (民80)。學習心理學─學習理論導論(王文科主譯)。臺北:五南圖書出版公司。
    Leahey, T. H. (民85)。心理學史(李維譯)。臺北:桂冠圖書公司。
    Piage, J. (民83)。發生認識論原理(王憲鈿等譯)。北京:商務印書館。
    Soltis, J. F.(民84)。教育概念分析導論(簡成熙譯)。臺北:五南圖書出版公司。
    Alexander, P. A., Kulikowich, J. M., & Jetton, T. L. (1994). Subject-matter knowledge: The influence of situation and motivation. Review of Educational Research. 64, 201-252.
    Alexander, P. A., Kulikowich, J. M., & Schulze, S.K. (1994). How subject-matter knowledge affects recall and interest. American Educational Research Journal, 31, 313-337.
    Anderson, J. R. (1990). Cognitive Psychology and Its Implications. (3rd ed.) NY: W. H. Freeman and Company.
    Back, J. & Oppenheim, C. (2001). A model of cognitive load for IR: implications for user relevance feedback interaction. Information Research. 6(2), 108-113.
    Bannert, M. (2001). Managing cognitive load- Recent trends in cognitive load theory. Learning and instruction. 12. 139-146.
    Bell-Grendler, M. E., (1991). Learning and Instruction: Theory into Practice. NY: Macmillan.
    Bobis, J., Sweller, J., & Cooper, M., (1993). Cognitive load effects in a primary-school gemetry task. Learning and Instruction. 3, 1-21.
    Brnken, R., Plass.J. L., Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist. 38(1). 53-61.
    Camacho, M. (1986). Analysis of the performance of experts and novice while sloving Chemical equilibrium problem. Dissertation Abstracts International. 44. 2979A.
    Chandler, P. & Sweller, J., (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(8), 293-332.
    Childers, T. L., Houston, M. J., & Heckler, S. E. (1985). Measurement of individual differences in visual versus verbal information processing. Journal of Consumer Research. 12(2), 125-134.
    Cooper, G., (1998). Research into cognitive load theory and instructional design at UNSW. Retrieved January 25, 2004, from the World Wide Web: http://www.art.edu.au.
    Cooper, L. A. (1988). The role of spatial representations in complex problem solving. In S. Schiffer & A. S. Steele. (Eds.) Cognition and representations. Boulder, Colo.: Westview Press. pp.53-86.
    Cooper, L. A. (1989). Mental models of the structure of visual objects. In B. E. Shepp & S. Ballesteros. (Eds.) Object perception: structure and process. Hillsdale, NJ: Lawrence Erlbaum Associates, publishers. pp.91-119
    Cooper, L. A. (1991). Dissociable aspects of the mental representation of visual objects. In R. H. Logie and M. Denis (Eds.). Metal images in human cognition. Elsevier Selence Publishers B. V. pp.3-34..
    Donelson, F. L. (1990). The development, testing, and use of a computer interface to evaluate an information processing model describing the rates of encoding and mental rotation in high school students of high and low spatial ability. (ERIC ED 326 396).
    French, T. E., Vierck, C. J., & Foster, R. J. (1984). Graphic science and design. (4th ed.). NY: McGraw-Hill Book Company.
    Gerjets, P. & Scheiter, K. (2003). Goal configurations and processing strategies as moderators between instructional design and cogbnitive load: evidence from hypertext-based instruction. Educational psychologist. 38(1). 33-41.
    Glaser, R. & Chi, M. T. H., (1988), Overview, In M. T. H. Chi, et al. (Eds.). The nature of expertise. NJ: Lawrence Erlbaum Associates, pp.xviii-xix.
    Johnson-Laird, P. N. (1983). Mental models: towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.
    Kalyuga, S., Chandler, P., & Sweller, S. (1998). Levels of expertise and instructional design. Human Factors. 40, 1-17.
    Kintsch, W. (1988). The use of knowledge in discourse processing: A construction- intrgration model. Psychological Review. 95, 163-182.
    Kintsch, W. (1998). Comprehension: A paradigm for cognition. Boulder, Colo: Cambridge University Press.
    Kirschner, P. A. (2001). Cognitive load theory: implications of cognitive load theory on the design of learning. Learning and instruction. 12. 1-10.
    Kritchevsky, M. (1988). The Elementary Spatial Functions of the Brain, in J. Stiles-Davis et al. (Eds.). Spatial Cognition: Brain Bases and Development. Hillsdale, NJ: Lawrence Erlbaum Associates, Publisher. pp.111-140.
    Liben, L. S. (1981). Spatial Representation and Behavior: Multiple Perspectives. in L. S. Liben, A. H. Patterson, & N. Newcombe (Eds.). Spatial Representation and Behavior Across the Life Span: Theory and Application. NY: Academic Press.
    Lowe, R. (1993). Scientific diagrams: how well can students read them? (ERIC ED 370 787).
    Marcus, N., Cooper, M. & Sweller, J. (1996). Understanding Instructions, Journal of Educational Psychology. 88(1), 49-63.
    Matlin, M. W. (1998). Cognition, (4th), Fort Worth: Harcourt Brace College Publishers.
    Mayer, R. E. & Gallini, J. K. (1990). When is an illustration worth ten thousand word? Journal of Educational Psychology. 82. 715-726.
    Mayer, R. E. (1992). Thinking, problem solving, cognition. (2nd ed.), NY: W.H. Freeman and company.
    Mayer, R. E. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist. 38(1). 43-52.
    Mayer, R. E., Steinhoff, K., Bower, G. & Mar, R. (1995). A generative theory of textbook design: using annotated illustrations to foster meaningful learning of science text. Educational Technology Research and Development. 43(1), 31-44.
    Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens. (Eds). Mental Models. Hillsdale, NJ: Lawrence Erlbaum Associates, publishers.
    Paivio, A. (1975). Perceptual comparisons through the mind’s eye, Memory and cognition. 3, 635-647.
    Paivio, A. (1986). Mental representations: a dual coding approach, Oxford, England: Oxford University Press.
    Pass, F. (2003). Cognitive load theory and instructional design: recent developments, Educational Psychology. 3(1).1-4.
    Pass, F. G. W. & Van Merrinboer, J. J. G. (1994a).Instructional controal of cognitive load in the training of complex cognitive tasks. Educational Psychology review. 6, 351-371.
    Pass, F. G. W. & Van Merrinboer, J. J. G. (1994b). Variability of worked examples and transfer of geometrical problem-solving skills: a cognitive-load approach, Journal of Educational. 86(1), 122-133.
    Pass, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist. 38(1), 63-71.
    Piaget, J. (1955). The construction of reality in the child. (M. Cook, Trans.) London: Routledge & Kegan Paul ltd. (Original work published 1954)
    Pressley, M.(2000). What should comprehension instruction be the instruction of? In M. L. Kamil, P. b. Mosenthal, P. D. Pearson, & R. Barr. (Eds.). Handbook of Reading Research Volume Ⅲ(545-561). Mahwah, NJ: Lawrence Erlbaum Associates.
    Reed, S. K., (1988). Cognition: theory and applications. (2nd ed.). Pacific Grove, California: Books/ Cole Publishing Company.
    Rickheit, G.. & Sichelschmidt, L.(1999). Mental Models: Some Answers, Some Questions, Some Suggestions. In G. Rickheit, & C. Habel (Eds.). Mental Models in Discourse Processing. Elsevier Science.pp.54-98
    Rohwer, Jr. W. D., & Thomas, J. W. (1989). Domain-specific knowledge, metacognition, and the promise of instructional perform. In B. M.Christine, E. M. Gloria, and P. Michael (Eds.). Cognitive strategy research: from basic research to educational applications, NY: Springer-Verlag, pp.104-132.
    Shepard, R. N., and Metzler, J. (1971). Mental rotation of three-dimensional objects, Science. 171, 701-703.
    Sweller, J. (1989). Cognitive technology:some procedures for facilitating learning and problem solving in Mathematics and Science. Journal of Educational Psychology. 81(4), 457-466.
    Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12, 257-285.
    Sweller, J.(1990).On the limited evidence for the strategies. Journal for Research in Mathematics Education. 21(5), 411-415.
    Sweller, J., Van Merrienboer, J. J. G., & Pass, F. G. W. (1998). Cognitive architecture and instructional design. Educational Psychology Review. 10(3), 251-296.
    Tabbers, H. , Martens, R., & Van Merrinboer, J. J. G. ( 2004). Multmedia instructions and cognitive load theory:split-attention and modality effects. British Journal of Educational Psychology. 74, 71-81.
    Vamvakoussi, X. & Vosniadou, S. (2004). Understanding the structure of rational numbers: A conceptual change approach. Στο L. Verschaffel και S. Vosniadou (Eds.), Conceptual Change in Mathematics Learning and Teaching, Special Issue of Learning and Instruction, 14, 453-467.
    Van Gerven, P. W. M., Pass, F.G. W. C., Van Merrienboer, J. J. G., & Schmidt, H. G. (2001). Cognitive load theory and aging: effects of worked examples on training efficiency. Learning and instruction. 12, 87-105.
    Van Gerven, P. W. M., Pass, F.G. W. C., Van Merrienboer, J. J. G., & Schmidt, H. G. (2002). Memory load and task-evoked papillary responses in aging. Manuscript submitted for publication.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction. 4, 45-69.
    Vosniadou, S. (2002). Mental models in conceptual development. In L. Magnani & N. Nersessian Model-Based Reasoning: Science, Technology, Values, NY: Kluwer Academic Press.
    Vosniadou, S. (2005). Exploreing the relationships between conceptual change and intentional learning.In G. M. Somatra & P. R. Pintrich. (Eds). Intentional conceptal change. Mahwah, NJ: Lawence Erlbaum Associates. pp.125-136.
    Vosniadou, S., & Brewer, W. F. (1992). Mental Models of the Earth:A Study of Conceptual Change in Childhood. Cognitive Psychology. 24, 535-585.
    Voss, J. F., & Silfies, N. L. (1996). Learning from history text: the interaction of knowledge and comprehension skill with text structure. Cognition and Instruction. 14, 45-68.

    QR CODE