研究生: |
洪舜文 Hong, Shun-Wen |
---|---|
論文名稱: |
微小化氬氣電漿放射光譜應用於氣相層析偵測器之開發 A Gas Chromatographic Detector Employing Argon μ–plasma Emission spectrometry |
指導教授: |
呂家榮
Lu, Chia-Jung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 氬氣電漿 、常壓電漿 、揮發性有機氣體 、氣相層析 、放射光譜 |
英文關鍵詞: | Argon plasma, Atmospheric pressure plasma, Volatile organic compiunds, Gas cgromatograph, Emission spectroscopy |
DOI URL: | https://doi.org/10.6345/NTNU202202555 |
論文種類: | 學術論文 |
相關次數: | 點閱:98 下載:27 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用石英管及市售不鏽鋼管柱製作簡易電漿裝置,透過高壓交流電激發背景氣體氬氣產生電漿,配合光譜儀分析氬氣電漿的放射光譜,透過波長選擇、電壓條件最佳化、電極間距最佳化及載流氣體流速最佳化後,偵測CN分子碎片放光波長385-387 nm,調整電壓10.3 kV,電極間距0.57 mm,載流氣體流速3 mL/min。分析9個不同官能基之化合物,可以從結果推斷本研究所開發之偵測器適合偵測低沸點低極性的有機分子,各化合物的偵測下限約為30 pg,本研究亦透過改變載流氣體純度及改變載流氣體的組成探討電漿內的氮原子來源,當氬氣純度從99.99%提升至99.9995%,層析圖訊號面積下降約8%、訊號高度下降約14%,表示載流氣體可能為氮原子的來源之一,但並非主要來源。透過在電漿裝置內混入氧氣及氫氣的實驗結果中,混入氧氣後氮原子會和氧氣反應,致使有機分子主要以氫原子放光為主,大幅降低了偵測器感度,而從混入不同百分比的氫氣後,可以看出氫氣會和氮原子反應而消耗氮原子,致使CN放光減弱,間接證明了本研究所偵測的波長為CN放光。
本研究成功研發出新型電漿氣體偵測器,兼具裝置微小、成本低廉、可重複使用、壽命長及高靈敏度等優點,期許未來能應用於微小化氣相層析系統。
In this study, we develop a micro plasma sensor using quartz tube and commercial alloy column. Alloy column served as electrodes and gas inlet / outlet. Take advantage of spectroscope, we can analysis argon micro plasma emission spectroscopy for the detection of the volatile organic compounds. We selected wavelength in 385-387 nm which is CN emission, applied voltage was set to 10.3 kV, electrode gap was 0.57 mm, the carrier gas flow rate was 3 mL/min after optimization. We analyzed 9 different kinds of functional group compounds, the sensor exhibited higher sensitivity in low boiling point and polarity compounds. The lower limit of detection of those 9 different compounds was about 30 pg and the linear dynamic range of calibration curve was 2 orders (1-100 ng). We also switch the argon gas from 99.99% to 99.9995% in order to find out the source of the nitrogen atom. The peak area and height were only reduced 8% and 14%, respectively. The result demonstrated that the impurity of argon gas may be the one of possible nitrogen sources, but not the major one. The experiment with modifying the composition of background gas, we added up 10% of oxygen gas and 0.5-10% of hydrogen gas. The result indicated that the carbon containing species transform into CN in plasma system indirectly.
We construct a micro argon plasma detector which is low cost and long lifetime. With appropriate improvement it can be applied for micro gas chromatograph system.
1. Sung, L.-Y. and Lu, C.-J., A single-beam titration method for the quantification of open-path Fourier transform infrared spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014. 145: p. 43-49.
2. Jian, R.-S., Sung, L.-Y., and Lu, C.-J., Measuring real-time concentration trends of individual VOC in an elementary school using a sub-ppb detection μGC and a single GC–MS analysis. Chemosphere, 2014. 99: p. 261-266.
3. Wong, M.-Y., Cheng, W.-R., Liu, M.-H., Tian, W.-C., and Lu, C.-J., A preconcentrator chip employing μ-SPME array coated with in-situ-synthesized carbon adsorbent film for VOCs analysis. Talanta, 2012. 101: p. 307-313.
4. Jian, R.-S., Wang, T.-Y., Song, L.-Y., Kuo, C.-Y., Tian, W.-C., Lo, E.-W., and Lu, C.-J., Field investigations and dynamic measurements of process activity induced VOCs inside a semiconductor cleanroom. Building and Environment, 2015. 94, Part 1: p. 287-295.
5. Bradley, C.K., Hua, C., and Xin, Z., A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector. Journal of Micromechanics and Microengineering, 2010. 20(5): p. 055016.
6. Narayanan, S. and Agah, M., Fabrication and Characterization of a Suspended TCD Integrated With a Gas Separation Column. Journal of Microelectromechanical Systems, 2013. 22(5): p. 1166-1173.
7. I.H.Hutchinson, Introduction to Plasma Physics. 2001.
8. Yaffa & Shalom Eliezer, The Fourth State of Matter,. 1989.
9. Savitzky, A. and Golay, M.J.E., Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964. 36(8): p. 1627-1639.
10. Schafer, R.W., What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Processing Magazine, 2011. 28(4): p. 111-117.
11. Bittencourt, J.A., Fundamentals of Plasma Physics. 2004.
12. Laroussi, M. and Akan, T., Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Processes and Polymers, 2007. 4(9): p. 777-788.
13. Reitz, U., Salge, J.G.H., and Schwarz, R., Pulsed barrier discharges for thin film production at atmospheric pressure. Surface and Coatings Technology, 1993. 59(1): p. 144-147.
14. Chang, J.S., Lawless, P.A., and Yamamoto, T., Corona discharge processes. IEEE Transactions on Plasma Science, 1991. 19(6): p. 1152-1166.
15. 洪昭南, 化工技術. 1995. 124-135.
16. Eliasson, B. and Kogelschatz, U., Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science, 1991. 19(6): p. 1063-1077.
17. The Opensource Handbook of Nanoscience and Nanotechnology. 2013.
18. Kasap, S.O., Principles of Electronic Materials and Devives. 3 ed. 2005.
19. Zhu, H., Zhou, M., Lee, J., Nidetz, R., Kurabayashi, K., and Fan, X., Low-Power Miniaturized Helium Dielectric Barrier Discharge Photoionization Detectors for Highly Sensitive Vapor Detection. Analytical Chemistry, 2016. 88(17): p. 8780-8786.
20. McCormack, A.J., Tong, S.C., and Cooke, W.D., Sensitive Selective Gas Chromatography Detector Based on Emission Spectrometry of Organic Compounds. Analytical Chemistry, 1965. 37(12): p. 1470-1476.
21. Akbar, M., Shakeel, H., and Agah, M., GC-on-chip: integrated column and photoionization detector. Lab on a Chip, 2015. 15(7): p. 1748-1758.
22. Meng, F. and Duan, Y., Nitrogen Microplasma Generated in Chip-Based Ingroove Glow Discharge Device for Detection of Organic Fragments by Optical Emission Spectrometry. Analytical Chemistry, 2015. 87(3): p. 1882-1888.
23. Meng, F., Li, X., and Duan, Y., Chip-based ingroove microplasma with orthogonal signal collection: new approach for carbon-containing species detection through open air reaction for performance enhancement. Scientific Reports, 2014. 4: p. 4803.
24. 朱世琦, 微小化氦氣電漿光譜應用於氣象層析偵測器之研製. 2008, 天主教輔仁大學化學研究所.
25. Koch, J. and Niemax, K., Characterization of an element selective GC-plasma detector based on diode laser atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 1998. 53(1): p. 71-79.
26. Braman, R.S. and Dynako, A., Direct current discharge spectral emission-type detector. Analytical Chemistry, 1968. 40(1): p. 95-106.
27. Abdelli-Messaci, S., Kerdja, T., Bendib, A., and Malek, S., CN emission spectroscopy study of carbon plasma in nitrogen environment. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005. 60(7–8): p. 955-959.
28. Camacho, J.J., Poyato, J.M.L., Díaz, L., and Santos, M., Optical emission studies of nitrogen plasma generated by IR CO 2 laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007. 40(24): p. 4573.
29. Halasz, I., Concentration and Mass Flow Rate Sensitive Detectors in Gas Chromatography. Analytical Chemistry, 1964. 36(8): p. 1428-1430.
30. Scott, R.P.W., Chromatographic Detectors: Design: Function, and Operation. 1996.
31. 洪德裕, 微小化介電質氦氣電漿放射光譜應用於氣相曾西偵測器之研製. 2013, 國立臺灣師範大學化學研究所.
32. 黃祐杰, 電流式微小氬氣電漿-氣相層析偵測器. 2016, 國立臺灣師範大學化學研究所.
33. 吳韋霆, 介電質空氣電漿光譜-微小化氣相層析偵測器. 2016, 國立臺灣師範大學化學研究所.
34. Gochel-Dupuis, M., Delwiche, J., Hubin-Franskin, M.J., and Collin, J.E., High-resolution HeI photoelectron spectrum of acetonitrile. Chemical Physics Letters, 1992. 193(1): p. 41-48.
35. Espinho, S., Felizardo, E., Henriques, J., and Tatarova, E., Vacuum ultraviolet radiation emitted by microwave driven argon plasmas. Journal of Applied Physics, 2017. 121(15): p. 153303.