研究生: |
林潔 Lin, Chieh |
---|---|
論文名稱: |
開發以轉錄因子為基礎的全細胞生物感測器用於檢測苯丙胺酸與酪胺酸 Development of Transcriptional Factor-Based Whole-Cell Biosensors for Detection of Phenylalanine and Tyrosine |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 苯丙胺酸 、酪胺酸 、轉錄因子TyrR 、全細胞生物感測器 |
英文關鍵詞: | phenylalanine, tyrosine, transcriptional regulator TyrR, whole-cell biosensor |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.025.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
芳香族胺基酸在生物體內有許多重要的功能,是神經傳導物質、生長激素或是賀爾蒙的前驅物,在生物體內的濃度維持恆定,若過多過少都會造成疾病,例如苯丙酮尿症、酪胺酸血症等。人體內的酪胺酸大多是由苯丙胺酸轉變而來,這兩者之間的濃度也會互相影響。本實驗針對苯丙胺酸及酪胺酸設計了兩種全細胞生物感測器,第一部分利用TyrR調控蛋白控制芳香族胺基酸合成的機制,TyrR會對其調控組有不同程度的調控,研究各基因啟動子在苯丙胺酸或酪胺酸環境下的表現,選擇ParoF與PtyrP作為感測器的設計,並以螢光蛋白作為訊號表現,兩個啟動子分別對酪胺酸及苯丙胺酸都有良好的線性範圍與偵測極限。第二部分對PtyrP啟動子作突變,針對酪胺酸做感測,以兩種螢光蛋白作為訊號,可以依據酪胺酸濃度高低的不同,而呈現不同顏色的螢光訊號,兩種訊號都有良好的線性範圍與偵測極限。胺基酸代謝異常除了在血液中有顯著的濃度變化之外,也會影響其在尿液中的含量,尿液的收集是一種非侵入性的方式,本實驗最後也有將兩個部分所設計的感測器,嘗試用來檢測尿液中苯丙胺酸與酪胺酸的含量,並與液相層析質譜儀 (LC-MS) 的數值進行比較。
Aromatic amino acids play important roles in many organisms. They are the precursors of neurotransmitter, auxin and hormones. The levels of amino acids are normally maintained in a certain range, and out of range may lead to diseases, such as phenylketonuria and tyrosinemia. Tyrosine in human is mostly converted from phenylalanine, and the concentrations of the two can also affect each other. In this study, we developed two whole-cell biosensors for phenylalanine and tyrosine. In the part I, we utilized the transcriptional regulator TyrR to investigate the gene expressions of TyrR regulon promoters in the presence of phenylalanine or tyrosine. TyrR is the protein which regulates the synthesis and transport of aromatic amino acids by activating or repressing the genes of TyrR regulon. We selected PtyrP and ParoF promoters for our biosensor design. The two promoters both had good specificity, linear range and limit of detection for phenylalanine and tyrosine, respectively. In the part II, we mutated the PtyrP promoter for sensing tyrosine only. The sensor could respond to the tyrosine levels with two color fluorescent proteins. When the tyrosine level was low, the sensor presented red fluorescence; when the level was high, the sensor presented green fluorescence. The two signals had good linear range and limit of detection. Finally, we also test the sensors in human urine. The abnormal amino acid metabolism is not only reflected in blood but also in urine, and urine collection is a non-invasive way. We used the sensors to determine phenylalanine and tyrosine levels in human urine and compared with liquid chromatography-mass spectrometry (LC-MS).
(1) Blau, N.; van Spronsen, F. J.; Levy, H. L. Phenylketonuria. The Lancet 2010, 376, 1417.
(2) Hanley, W. B. Adult phenylketonuria. The American Journal of Medicine 2004, 117, 590.
(3) Guthrie, R.; Susi, A. A SIMPLE PHENYLALANINE METHOD FOR DETECTING PHENYLKETONURIA IN LARGE POPULATIONS OF NEWBORN INFANTS. Pediatrics 1963, 32, 338.
(4) Nakamura, K.; Matsumoto, S.; Mitsubuchi, H.; Endo, F. Diagnosis and treatment of hereditary tyrosinemia in Japan. Pediatrics International 2015, 57, 37.
(5) Levy, P. A.; Miller, J. B.; Shapira, E. The advantage of phenylalanine to tyrosine ratio for the early detection of phenylketonuria. Clinica Chimica Acta 1998, 270, 177.
(6) Hirayama, M. T., Makotob; Yamamoto, Mitsutoshic Tsuda, Takaod; Ohno, Kinjie Serum Tyrosine-to-Phenylalanine Ratio is Low in Parkinson’s Disease. Journal of Parkinson's Disease 2016, 6, 423.
(7) Wendel, U.; Hummel, W.; Langenbeck, U. Monitoring of phenylketonuria: A colorimetric method for the determination of plasma phenylalanine using l-phenylalanine dehydrogenase. Analytical Biochemistry 1989, 180, 91.
(8) Thiessen, G.; Robinson, R.; De Los Reyes, K.; Monnat, R. J.; Fu, E. Conversion of a laboratory-based test for phenylalanine detection to a simple paper-based format and implications for PKU screening in low-resource settings. Analyst 2015, 140, 609.
(9) Weiss, D. J.; Dorris, M.; Loh, A.; Peterson, L. Dehydrogenase based reagentless biosensor for monitoring phenylketonuria. Biosensors and Bioelectronics 2007, 22, 2436.
(10) Kim, M. I.; Park, T. J.; Heo, N. S.; Woo, M.-A.; Cho, D.; Lee, S. Y.; Park, H. G. Cell-Based Method Utilizing Fluorescent Escherichia coli Auxotrophs for Quantification of Multiple Amino Acids. Analytical Chemistry 2014, 86, 2489.
(11) Liu, Y.; Zhuang, Y.; Ding, D.; Xu, Y.; Sun, J.; Zhang, D. Biosensor-Based Evolution and Elucidation of a Biosynthetic Pathway in Escherichia coli. ACS Synthetic Biology 2017, 6, 837.
(12) Santos, C. N. S.; Stephanopoulos, G. Melanin-Based High-Throughput Screen for l-Tyrosine Production in Escherichia coli. Applied and Environmental Microbiology 2008, 74, 1190.
(13) Polen, T.; Krämer, M.; Bongaerts, J.; Wubbolts, M.; Wendisch, V. F. The global gene expression response of Escherichia coli to l-phenylalanine. Journal of Biotechnology 2005, 115, 221.
(14) Pittard, J.; Camakaris, H.; Yang, J. The TyrR regulon. Molecular Microbiology 2005, 55, 16.
(15) Yang, J.; Hwang, J. S.; Camakaris, H.; Irawaty, W.; Ishihama, A.; Pittard, J. Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli. Molecular Microbiology 2004, 52, 243.
(16) Andrews, A. E.; Dickson, B.; Lawley, B.; Cobbett, C.; Pittard, A. J. Importance of the position of TYR R boxes for repression and activation of the tyrP and aroF genes in Escherichia coli. Journal of bacteriology 1991, 173, 5079.
(17) Wang, P.; Yang, J.; Ishihama, A.; Pittard, A. J. Demonstration that the TyrR Protein and RNA Polymerase Complex Formed at the Divergent P3 Promoter Inhibits Binding of RNA Polymerase to the Major Promoter, P1, of the aroP Gene ofEscherichia coli. Journal of bacteriology 1998, 180, 5466.
(18) Verma, N.; Singh, M. Biosensors for heavy metals. BioMetals 2005, 18, 121.
(19) Belkin, S. Microbial whole-cell sensing systems of environmental pollutants. Current Opinion in Microbiology 2003, 6, 206.
(20) Tseng, H.-W.; Tsai, Y.-J.; Yen, J.-H.; Chen, P.-H.; Yeh, Y.-C. A fluorescence-based microbial sensor for the selective detection of gold. Chemical Communications 2014, 50, 1735.
(21) Chen, P.-H.; Lin, C.; Guo, K.-H.; Yeh, Y.-C. Development of a pigment-based whole-cell biosensor for the analysis of environmental copper. RSC Advances 2017, 7, 29302.
(22) Lin, Y.-K.; Yeh, Y.-C. Dual-Signal Microbial Biosensor for the Detection of Dopamine without Inference from Other Catecholamine Neurotransmitters. Analytical Chemistry 2017, 89, 11178.
(23) https://www.neb.com/products/restriction-endonucleases/restriction-endonucleases/restriction-endonucleases-molecular-cloning-and-beyond?device=pdf.
(24) Mutalik, V. K.; Guimaraes, J. C.; Cambray, G.; Lam, C.; Christoffersen, M. J.; Mai, Q.-A.; Tran, A. B.; Paull, M.; Keasling, J. D.; Arkin, A. P.; Endy, D. Precise and reliable gene expression via standard transcription and translation initiation elements. Nature methods 2013, 10, nmeth.2404.
(25) Xiao, Y.; Jiang, W.; Zhang, F. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin. ACS Synthetic Biology 2017, 6, 1807.
(26) Shibata, A.; Iida, Y.; Hayashi, T.; Otsuki, N. Determination of Phenylpyruvic Acid in Human Urine and Plasma by Gas Chromatography/Negative Ion Chemical Ionization Mass Spectrometry. Journal of the Mass Spectrometry Society of Japan 1992, 40, 165.
(27) Langenbeck, U.; Behbehani, A.; Mench-Hoinowski, A. A synopsis of the unconjugated acidic transamination metabolites of phenylalanine in phenylketonuria. Journal of Inherited Metabolic Disease 1992, 15, 136.
(28) Lee, T. S.; Krupa, R. A.; Zhang, F.; Hajimorad, M.; Holtz, W. J.; Prasad, N.; Lee, S. K.; Keasling, J. D. BglBrick vectors and datasheets: A synthetic biology platform for gene expression. Journal of Biological Engineering 2011, 5, 12.
(29) Bi, C.; Su, P.; Müller, J.; Yeh, Y.-C.; Chhabra, S. R.; Beller, H. R.; Singer, S. W.; Hillson, N. J. Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microbial Cell Factories 2013, 12, 107.