簡易檢索 / 詳目顯示

研究生: 謝州恩
Hsieh, Chou-En
論文名稱: 建構國小科學本質學習要項與教學研究
Constructing Essential Content Items of Nature of Science for Elementary Science Curriculum and Students’ Learning
指導教授: 劉湘瑤
Liu, Shiang-Yao
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 331
中文關鍵詞: 大慧法後設認知科學本質課程綱要論證
英文關鍵詞: Delphi Technique, Meta-cognition, Nature of Science, Curricular Benchmark, Argumentation
DOI URL: https://doi.org/10.6345/NTNU202202584
論文種類: 學術論文
相關次數: 點閱:191下載:99
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於目前在我國12年國教課程綱要正在進行編修的時期,本研究參考實證哲學、科學史、科學心理、科學社會學領域的文獻及若干國家科學本質課程要項,先歸納出重要的科學本質項目23項,依其科哲觀點區分成實證、調和與後實證觀點。再請國內專家學者與學專門教師,進行大慧法(Delphi technique)問卷調查,以尋求適合國小學生學習的科學本質要項的共識。從分析Kendall和諧係數可知,科學本質在國小課程的重要性與科學本質的哲學觀點,各群內兩回問卷皆達顯著的一致性,且專家學者與專門教師在兩回合大慧法問卷,也達成顯著的一致性。大慧法歸納出的科學本質學習項目共十項,如:科學家需要創造力與想像力、科學由科學社群建構而成、科學目的之一在解決問題,以及科學知識帶給人們啟示等,適合納入國小自然科學課程與教學。本研究另一個目的在尋找能達成目的的教學,使學生能達成前述科學本質要項的學習。以作者任教學校的六年級班級分成:一般教學、論證教學、論證省思教學三種策略進行準實驗研究,來瞭解學生經六個活動後,是否達成專家學者的科學本質認識。透過質性(五題)與量化前、後測(30題)、教室錄影音、訪談(七題)與學生學習單等資料來源分析,發現一般教學班與高成就學生科學本質觀點未改變,而論證教學與論證省思教學班的學生科學本質有部分項目觀點改變,論證省思班與高成就學生的科學本質觀點經教學後較能接近前述的科學本質要項的學習目標。論證與論證省思班的中、低學習成就學生在若干科學本質觀點上也有轉變。論證與論證省思班學生的論證皆有進步,其中論證省思班以主張和理由進步較多。論證省思班的學習活動設計較強調後設認知策略,使學生對科學本質認識的轉變較明顯。研究結果建議,論證省思教學模式可提升國小學生建立科學本質的認識。

    This study reviewed the literature regarding positivist philosophy of science, psychology of science, history of science, sociology of science, articles published by Lederman and colleagues, and curricular benchmarks of some countries, and then generated 23 items of aspects of nature of science (NOS). Three categories representing different philosophical perspectives were determined including positivism, eclecticism, and post-positivism. The 23 NOS content items were inspected by professional elementary science teachers and scholars, who possessed a masters in science, science education, and science philosophy by using the Delphi technique. There were no difference on the ranking of the importance of the NOS items according to the results of Kendall’s coefficient of concordances and also no significant differences between scholars’ and teachers’ views on the categories of philosophical perspectives. This study proposed 10 essential NOS aspects, such as “science inspires people,” “the purpose of science is to solve problems,” “scientific knowledge aims to be enduring but sometimes is subject to change,” “science is constructed by the scientific community,” “scientists use creativity and imagination,” etc. The second goal of this study is to find an effective teaching strategy to make students change their NOS viewpoints close to the result of the Delphi study. For realizing the processes and effectiveness of students’ NOS views, a quasi-experimental study was conducted with students of five classes randomly assigned to general teaching, argumentation teaching, and reflective-argumentation teaching. By analyzing pre- and post- tests, classroom videos and observation records, student interviews, and worksheets, the researcher found that the students in general teaching had not change their NOS views. Students in argumentation teaching and reflective-argumentation teaching had some NOS views changed, especially boys and mid and low learning achievement students. Results suggest that the reflective-argumentation teaching could make students’ NOS views approaching to the Delphi results. Students in argumentation teaching and reflective-argumentation teaching made progress on their arguments, while the reflective-argumentation teaching could help students construct claims and reasoning better than argumentation teaching. The more range the students regulate by their meta-cognition, the more change the NOS views showed. It is suggested that the reflective argumentation teaching is a suitable strategy to help elementary students realize the contemporary NOS.

    第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的與問題 11 第三節 名詞釋義 14 第四節 研究範圍與限制 17 第貳章 文獻探討 20 第一節 何謂科學本質 20 第二節 科學內、外部史 24 第三節 科學教育與科學本質 44 第四節 科學本質課程與教學策略 63 第叁章 研究方法 77 第一節 大慧法建立國小科學本質標準 77 第二節 科學本質問卷的建構 87 第三節 小學生科學本質認識轉變分析 93 第肆章 研究結果 135 第一節 大慧法諮詢結果 135 第二節 學生的科學本質觀點 144 第三節 學生科學本質觀點轉變的教學策略 171 第伍章 討論 189 第一節 大慧法結果與討論 189 第二節 一般、論證與論證省思教學結果與討論 197 第陸章 結論與建議 205 第一節 結論 205 第二節 建議 207 第三節 未來研究方向 209 參考文獻 210 附錄 221 附錄A 九年一貫課程標準裡的科學本質綱要 221 附錄B 以大慧法建立國小NOS第一次寄送內容 222 附錄C 以大慧法建立國小NOS專家學者第二次寄送內容 231 附錄D 以大慧法建立國小NOS專門教師第二次寄送內容 257 附錄E NOS量化前、後測試題與專家效度檢核表-溫老師 282 附錄F NOS質性前、後測試題 295 附錄G 預試與前、後測量化問卷 297 附錄H 論證省思教學活動課程與後設認知檢核 303 附錄I 學生學習單範例內容 315 附錄J 訪談學生問題 329 附錄K 教學活動照片 330

    丁邦平(2002)。论国际理科教育的范式转换—从科学教育到科技教育。比较教育研究,140,1-6。
    刘兵(2009)。克丽奥眼中的科学-科学编史学初探。上海市:上海科技教育出版社。
    邱仁宗(1987)。论科学史中内在主义与外在主义之间的张力。自然辩证法通讯,1,39-47。
    邱兆偉編(2004)。當代教育哲學。台北市:師大書苑。
    邱明富、高慧蓮(2006)。科學史融入教學對國小學童科學本質觀影響之探究。科學教育學刊,14(2),163-187。
    李田英(2000)。由設計科學課程的理論談本次課程改革的一些問題。科學教育,,
    231,28-34。
    李哲迪(2009,6月)。在TIMSS2007與PISA2006跨國調查脈絡中分析台灣國中學生之科學學習成果。載於台北市立教育大學舉辦之「中小學課程發展之相關基礎性研究」2009年成果討論會論文輯,台北市。
    李国秀编(2000)。科学的社会视角。合淝市:安徽人民出版社。
    李茂能、楊德清(2015)。工作記憶力、後設認知能力對於國小高年級一般兒童
    與注意力缺陷過動症兒童之數常識發展的徑路結構分析。科學教育學刊,
    23(3),265-291。
    沈铭贤(1988)。新科学观。上海市:江苏科学技术出版社。
    吳明隆(2007)。SPSS統計應用學習實務分析。台北市:知城圖書。
    芮涵芝(1996)。科學的本質。台北市:桂冠圖書公司。
    林清山(1992)。心理與教育統計。台北市:東華圖書公司。
    林陳涌(1996)。「了解科學本質量表」之發展與效化。科學教育學刊,4(1),31-58。
    林陳涌、鄭榮輝、張永達(2009)。融入科學史教學對高中學生的科學本質觀、對科學的態度以及學習成就的影響,科學教育學刊,17(2),93-109。
    林淑梤、劉聖忠、黃茂在、陳素芬、張文華(1998)。運用科學史傳達NOS—以簡單機械單元為例。科學教育月刊,315,2-18。
    姜志忠、張惠博、林淑梤、鄭一亭(2006)。物理史融入教學對提升學生科學認識論瞭解及其學習成效之研究。科學教育學刊,14(6),637-661。
    翁秀玉(1997)。國小自然科教師傳達科學本質之行動研究。國立彰化師範大學科學教育研究所碩士論文,未出版。
    翁秀玉、段曉林(1997)。科學史對國小六年級學生理解NOS之成效。科學教育研究與發展季刊,8,26-41。
    袁维新(2005)。国外科学史融入科学课程的研究综述。比较教育研究,185,62-67。
    郭生玉(2001)。心理與教育測驗。台北縣:精華書局。
    张永宗、魏炎顺(2003)。台湾地区与英国中小学阶段科技教育课程之比较。比较教育研究,159,70-75。
    張景媛(1997)。國中生之正負向情緒與其後設認知、學習動機關係之研究。教育心理學報,29,51-76。
    許良榮、蕭培玉 (2007)。中小學之科學本質與科學史的教學需求之研究。科學教育學刊,15 (1),1-23。
    許國忠、王靜如(2003)。NOS教學初探。科學教育研究與發展季刊,33,15-28。
    許綺婷(2015)。個案都市原住民學生之西方科學本質觀探討。課程與教學,18(2),125-167。
    教育部(2008)。97年度國民中小學九年一貫課程綱要。台北市:教育部。
    陳俊輝(1992)。哲學的基本架構。台北市:水牛出版社。
    陳瑞麟(2010)。科學哲學:理論與歷史。台北市:群學出版社
    傅大為(2004)。科技渴望社會。台北市:群學出版有限公司。
    傅大為(2009)。回答科學是什麼的三個問題。台北市:群學出版有限公司。
    黃光國(2003)。社會科學的理路(第二版)。台北市:心理出版社。
    黃光國(2013)。社會科學的理路(第三版)。台北市:心理出版社。
    舒煒光(2004)。科學哲學導論(第四版)。台北市:水牛出版社。
    喬莉莉、洪志誠(2005)。科學史融入國小自然科教學之研究。科學教育研究與發展季刊,41,17-34。
    詹志禹(1997)。從科學哲學的發展探討「理性」的意義及其對教育的含意。
    「當代教育哲學論文集II」,頁1-42。台北市:中央研究院。
    楊榮祥(1998)。中學科學教學環境之研究(III)。行政院國家科學委員會專題研究計畫成果報告(NSC-87-2511-S-003-011)。台北市:行政院國家科學委員會。
    楊桂瓊、林煥祥、洪瑞兒(2012)。以論證活動探討國小學童論證能力和科學本質表現。科學教育學刊,20(2),145-170。
    劉俊庚、邱美虹(2012)。我國百年國中科學課程發展回顧與展望,科學教育月刊,347,2-20。
    蔡今中(1998)。改變學生的科學認識觀:以STS教學為例。於高雄師範大學主辦之「第十四屆科學教育學術研討會會議手冊短篇論文彙編」(頁445-448),高雄市。
    謝州恩、吳心楷(2005)。探究情境中國小學童科學解釋能力成長之研究。師大
    學報:科學教育類,50(2),55-84。
    謝州恩、劉湘瑤(2013)。省思九年一貫自然與生活科技課程綱要中的科學本
    質內涵。科學教育研究與發展季刊,66,53-76。
    謝州恩、劉湘瑤(2016)。建構國小自然科學課程之科學本質要項。科學教育
    學刊,24(4),355-377。
    蘇育任(2005)。英國中小學的科學教育。教育資料與研究雙月刊,64,60-
    88。
    蘇鈺楠(2011)。理性、批判思考和教育─論Harvey Siegel的批判思考理論。科
    學教育學刊,19(1),25-37。

    American Association for the Advancement of Science. (1989). Science for all Americans: A project 2061 report on literacy goals in science, mathematics, and technology. Washington, DC: Author.
    American Association for the Advancement of Science. (1993). Project 2061: Benchmarks for science literacy. New York: Oxford University Press.AAAS. (1989). Science for All Americans: A project 2061 report on literacy goals in science, mathematics, and technology. Washington, DC: AAAS Publication.
    AAAS.(2001). Atlas of science literacy (Vol. 1). Washington, DC: American Association for the Advancement of Science Press.
    AAAS.(2007). Atlas of science literacy (Vol. 2). Washington, DC: American Association for the Advancement of Science Press.
    Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82, 417-436.
    Abd-El-Khalick, F., & Lederman, N. G. (2000). The influence of history of science courses on students’ views of nature of science. Journal of Research in Science Teaching, 37(10), 1057-1095.
    Abell, S. K., & Smith, D.C. (1994). What is science? Preservice elementary teachers’ conceptions of the nature of science. International Journal of Science Education, 16(4), 475-487.
    Abimbola, I. O. (1983).The relevance of the "new" philosophy of science for the science curriculum. School Science & Mathematics, 83(3), 181-193.
    ACARA. (2013). The Australian curriculum: Science. Retrieved March 03, 2013, from http: //www.australiancurriculum.edu.au/.
    Akerson, V. L., Hanson, D. L., & Cullen, T. A. (2007).The influence of guided inquiry and explicit instruction on K-6 teachers’ views of nature of science.Journal of Science Teacher Education, 18(5), 751-772.
    Allchin, D. (2004). Should the sociology of science be rated X? Science Education, 88, 934-946.
    Allchin, D. (2011). Evaluating knowledge of the nature of science. Science Education, 95, 518-542.
    Alters, B. J. (1997). Whose nature of science? Journal of Research in Science Teaching, 34(1), 39-55.
    Baert, P. (2005). Philosophy of the social sciences: Toward pragmatism. Cambridge: Polity Press.
    Bell, R. L., Blair, L. M., Crawford, B. A., Lederman, N. G. (2003). Just do it? Impact of a science apprenticeship program on high school students' understanding of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487-509.
    Bell, R. L., & Lederman, N. G. (2003). Understandings of the nature of science and decision making on science and technology based issues. Science Education, 87, 352-377.
    Bell, P., & Linn, M. (2000). Scientific arguments as learning artifacts: Designing for learning from the Web with KIE. International Journal of Science Education, 22, 797-817.
    Bell, R. L., Matkins, J. J., & Gansneder, B. M. (2011). Impacts of contextual and explicit instruction on preservice elementary teachers' understandings of the nature of science. Journal of Research in Science Teaching, 48(4), 414-436.
    Ben-David, A., & Orion, N. (2013). Teachers' voices on integrating metacognition
    into science education. International Journal of Science Education, 35(18),
    3161-3193.
    Berland, L. K., & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson. Science Education, 95(5), 808-813.
    Bielaczyc, K., Pirolli, P. L., & Brown, A. L. (1995). Training in self-explanation and self-regulation strategies: Investigating the effects of knowledge acquisition activities on problem solving. Cognition and Instruction, 13(2), 221-252.
    Billeh, V. Y., & Hasan, O. E. (1975). Factors affecting teachers' gain in understanding the nature of science. Journal of Research in Science Teaching, 12(3), 209-219.
    Black, P., & Atkin, J. M. (1996).Changing the Subject: Innovations in science, mathematics and technology education. London: Routledge.
    Brewer, W. F., & Lambert, B. L. (1993). The theory ladenness of observation: Evidence from cognitive psychology. Paper presented at the Fifteenth Annual Conference of the Cognitive Science Society. Hillsdale, N.J.
    Brown, A. L. (1978). Knowing when, where, and how to remember: A problem of metacognition. In Glaser, R. (Ed.), Advances in instructional psychology (pp. 77-165). New York: Halsted Press.
    Brown, A. L. (1987). Metacognition, executive control, self-regulation and other more mysterious mechanisms. In Weinert, F. E., & Kluwe, R. H. (Eds.), Metacognition, motivation, and understanding. London: Lawrence Erlbaum.
    Cakic, Y., & Bayir, E. (2012). Developing children's views of the nature of science through role play. International Journal of Science Education, 34(7), 1075-1091.
    Carey, R. L., & Stauss, N. G. (1968). An analysis of the understanding of the nature of science by prospective secondary science teachers.Science Education, 52(4), 358-363.
    Case, J. M., & Gunstone, R. F. (2002). Metacognitive development as a shift inapproach to learning: An in-depth study. Studies in Higher Education, 27(4), 459-470.
    Chalmers, A. F. (1999). What is this thing called science? (3rd ed.). Brisbane, Australia: University of Queensland Press.
    Cho, J. (2002). The development of an alternative in-service programme for Korean science teachers with an emphasis on science-technology-society. International Journal of Science Education, 24(10), 1021-1035.
    Choi, I., Land, S. M., & Turgeon, A. Y. (2005). Scaffolding peer-questioning strategies to facilitate metacognition during online small group discussion. Instructional Science, 33(5-6), 483-511.
    Cleminson, A. (1990). Establishing an epistemological base for science teaching in the light of contemporary notions of the nature of science. Journal of Research in Science Teaching, 27(5), 429-445.
    Collette, A. T., & Chiappetta, E. L. (1994). Science instruction in the middle and science school (3nded.). Columbus: Merrill.
    Eager, M. (1991). Dissonance in the theory and practice of rationality: Teaching evolution and teaching morals. In Matthews, M. R. (Ed.), History, philosophy, and science teaching: Selected readings. Toronto: OISE Press.
    Feigl, H. (1970). The "orthodox" views of theories: Remarks in defense as well as critique. In Radner, M. & Winokur, S. (Eds.), Theories and Methods of Physics and Psychology (Vol. 4, pp. 3-16). Minneapolis: University of Minnesota Press.
    Feyerabend, P. (1975). Against method: Outline of an anarchistic theory of knowledge. London: New Left Books.
    Feyerabend, P. (1978). Science in a free society. London: Lowe & Brydone.
    Flavell, J. H. (1976). Metacognitive aspects of problem solving. In Resnick, L. B. (Ed.), The Nature of intelligence (pp. 231-235). Hillsdale, N. J.: Erlbaum.
    Garner, R., & Alexander, P. A. (1989). Metacognition: answered and unanswered questions. Educational Psychologist, 24(2), 143-158.
    Georghiades, P. (2004). From the general to the situated: three decades of metacognition. International Journal of Science Education, 26, 365-383.
    Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.
    Heap, R., & France, B. (2013). Realising the potential of an authentic context to understand the characteristics of NOS and NOT: You, me and UV. International Journal of Science Education, 35(2), 335-355.
    Hempel, C. G. (1948). Studies in the logic of explanation. Philosophy of science, 15, 135-175.
    Hogan, K. (2000). Exploring a process view of students' knowledge about the nature of science. Science Education, 84(1), 51-70.
    Hung, E. H.-C. (1997). The nature of science: Problems and perspectives. Belmont: Wadsworth Publishing Company.
    Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding og multivariable causality. Journal of Research in Science Teaching, 40(9), 898-921.
    Khine, M. S. (Ed.)(2012). Advances in Nature of Science Research: Concepts and methodologies. Netherlands: Springer.
    Khishfe, R. (2008). The development of seventh graders’ views of nature of science. Journal of Research in Science Teaching, 45(4), 470-496.
    Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578.
    Khishfe, R., & Lederman, N. G. (2006). Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching, 43(4), 395-418.
    Khishfe, R. (2014). Explicit nature of science and argumentation instruction in the
    context of socioscientific issues: An effect on student learning and transfer.
    International Journal of Science Education, 36(6), 974-1016.
    Khishfe, R. (2014). A look into students’ retention of acquired nature of science understandings. International Journal of Science Education, 37(10), 1639-1667.
    Khishfe, R. Alshaya, F. S., BouJaoude, S., Mansour, N., & Alrudiyan, K. I. (2017). Students’ understandings of nature of science and their arguments in the context of four socio-scientific issues. International Journal of Science Education, 39(3), 299-334.
    Knight, G. R. (1989). Issues and alternatives in educational philosophy. Andrews University Press.
    Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: Chicago University Press.
    Kuhn, T. S. (1977). The essential tension: Selected studies in scientific tradition and change. Chicago: University of Chicago Press.
    Lakatos, I. (1978). The methodology of scientific research program. Cambridge: Cambridge University Press.
    Laudan, L. (1977). Progress and its problems: Toward a theory of scientific growth. LA: University of California Press.
    Lederman, N. G., & Zeidler, D. L. (1987). Science teachers’ conceptions of the
    nature of science: Do they really influence teacher behavior? Science
    Education, 71, 721–734.
    Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359.
    Lederman, N. G. (1998). The state of science education: Subject matter without content. Electronic Journal of Science Education, 3(2), 1-12.
    Lederman, N. G. (1999). Teachers' understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36(8), 816-829.
    Lederman, N. G. (2004). Syntax of nature of science with inquiry and science instruction. In Flick, L. B., & Lederman, N. G. (Eds.), Scientific Inquiry and Nature of Science: Implication for teaching, learning, and teacher education (pp.301-317). Netherland: Kluwer Academic Publishers.
    Lederman, N. G. (2007). Nature of science: Past, present, and future. In Abell, S. K. & Lederman, N. G. (Eds.), Handbook of Research on Science Education (pp. 831-880). NJ: Lawrence Erlbaum Associates.
    Lederman, N. G., Abd-El-Khalick, F., Bell, R.L., & Schwartz, R.S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521.
    Lederman, N. G., Wade, P., & Bell, R. (1998). Assessing understanding of the nature of science: A historical perspective. In W. F. McComas (Ed.), The Nature of Science inScience Education (pp. 331-350). Dordrecht: Kluwer Academic Publishers.
    Lisa, M. H. (2002). Defining inquiry. The Science Teacher, Feb., 34-37.
    Liu, S. Y., & Lederman, N. G. (2002). Taiwanese gifted students' views of nature of science. School Science & Mathematics, 102(3), 114-123.
    Liu, S. Y., Lin, C.-S., & Tsai, C.-C. (2011). College students' scientific epistemological views and thinking patterns in socioscientific decision making. Science Education, 95(3), 497-517.
    Loving, C. C. (1991). The scientific theory profile: A philosophy of science models for science teachers. Journal of Research in Science Teaching, 28(9), 823-838.
    Martin, M. O., Mullis, I. V. S., Gonzalez, E. J., Gregory, K. D., Smith, T. A., Chrostowski, S. J., et al. (2000). TIMSS 1999 international science report: Findings from IEA’s repeat of the third international mathematics and science study at the eighth grade. Chestnut Hill, MA: Boston College.
    Matthews, M. R. (1994). Science teaching the role of history and philosophy of science. New York: Routledge.
    Matthews, M. R. (2012). Changing the focus: From nature of science (NOS) to features of science (FOS). In Khine, M. S. (Ed.), Advances in nature of science research: Concepts and methodologies (pp. 3-26). New York: Springer.
    McDonald, V. C. (2010). The influence of explicit nature of science and argumentation instruction on preservice primary teachers' view of nature of science. Journal of Research in Science Teaching, 47(9), 1137-1164.
    McComas, W. F. (1996). The myths of science: Reexamining what we think we know about the nature of science. School Science & Mathematics, 96, 10-16.
    McComas, W. F., Clough, M. P., & Almazroa, H. (1998).The role and character of the nature of science in science education. Science & Education, 7(6), 511-532.
    McComas, W. F., & Olson J. K. (1998). The nature of science in international science education standards documents. In McComas, W. F. (Ed.), The nature of science in science education (pp. 41-52). Dordrecht: Kluwer Academic Publishers.
    McDonald, C. V. (2010). The influence of explicit nature of science and argumentation instruction on preservice primary teach¬ers’ views of nature of science. Journal of Research in Science Teaching, 47(9), 1137-1164.
    McDonald, C. V., & McRobbie, C. J. (2010). Utilising argumentation to teach na¬ture of science. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second Interna¬tional Handbook of Science Education (pp. 969-986). New York: Springer.
    McNeill, K. L., & Krajcik, J. (2008). Scientific explanations: characterizing and evaluating the effects of teachers' inscriptional practices on students' learning. Journal of Research in Science Teaching, 45(1), 53-78.
    McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153-191.
    Meichtry, Y. J. (1992). Influencing students understanding of the nature of science: Data from a case of curriculum development. Journa of Research in Science Teaching, 29(4), 389-407.
    Ministry of Education, New Zealand (2007). The New Zealand curriculum. Retrieved March 03, 2013, from http: //nzcurriculum.tki.org.nz/Curriculum-documents.
    NAS. (1998). Teaching about evolution and the nature of science. Washington, DC: National Academy Press.
    National Research Council. (1996). National science education standards: Observe, interact, change, learn. Washington, DC: National Academic Press.
    NRC. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy of Sciences.
    NRC. (2011). A framework for K-12 science education: Practice, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
    National Science Teachers Association. (2000). NSTA position statement: The nature
    of science. Retrieved July 12, 2011, from
    http: //www.nsta.org/about/positions/natureofscience.aspx
    Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What "ideas-about-science" should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692-720.
    Osborne, J., & Patterson, A. (2012). Authors' response to “For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson” by Berland and McNeill. Science Education, 96(5), 814-817.
    Palincsar, A. S. (1998). Keeping the metaphor of scaffolding fresh: A response to C. Addison Stone's: The metaphor of scaffolding: Its utility for the field of learning disabilities. Journal of Learning Disabilities, 31, 370-373.
    Palmquist, B. C., & Finley, F. N. (1997). Preservice teachers' views of the nature of science during a postbaccalaureate science teaching program.Journal of Research in Science Teaching, 34(6), 595-615.
    Paris, S. G., & Lindauer, B. K. (1982).The development of cognitive skills during childhood.In Wolman, B. (Ed.), Handbook of developmental psychology (pp. 333-349). Englewood, Cliffs, NJ: Prentice-Hall.
    Park, D.-Y., & Lee, Y. B. (2009). Different conceptions of the nature of science among preservice elementary teacher of two countries. Journal of Elementary Science Education, 21(2), 1-14.
    Peterson, R. A. (2000). Constructing effective questionnaires. Washington D.C.: SAGE Publications.
    Pomeroy, D. (1993). Implications of teachers' beliefs about nature of science: Comparison of the beliefs of scientists, secondary science teachers, and elementary teachers. Science Education, 77(3), 261-278.
    Ronan, C. A. (1983). The Cambridge illustrated history of the world’s science. Cambridge: Cambridge University Press.
    Rosenberg, A. (2000). Philosophy of science: A contemporary introduction. New York: Routledge.
    Rubba, P. A., Horner, J. K., & Smith, J. M. (1981). A study of two misconceptions about the nature of science among junior high school students. School Science and Mathematics, 81(3), 221-226.
    Puntambekar, S., & Stylianou, A. (2005). Designing navigation support in hypertext systems based on navigation patterns. Instructional Science, 33, 451-481.
    Quine, W. V. (1961). From a logical point of view (2 ed.). New York: Harper & Row, Publishers.
    Quine, W. V. (1981). The pragmatist's' place in empiricism. In Zeltner, M. A. (Ed.), Pragmatism its sources and prospects (pp. 21-39). University of South Carolina Press.
    Rubba, P., Horner, J., & Smith, J. M. (1981). A study of two misconceptions about the nature of science among junior high school students. School Science & Mathematics, 81, 221-226.
    Sampson, V., Enderle, P., Grooms, J., & Witte, S. (2013). Writing to learn by learning
    to write during the school science labatory: Helping middle and high school
    students develop argumentative writing skills as they learn core ideas. Science
    Education, 97(5), 643-670.
    Schwartz, R., Lederman, N. G., & Abd-El-Khalick, F. (2012). A series of misrepresentations: A response to Allchin's whole approach to assessing nature of science understanding. Science Education, 96, 685-691.
    Shapere, D. (1984). Reason and the search for knowledge. Boston: Reidel Publishing Company.
    Shimony, A. (1991). Some comments on rationality in science and ethics. In Matthews, M. R. (Ed.), History, philosophy, and science teaching: Selected readings. Toronto: OISE Press.
    Smith, M. U., & Scharmann, L. C. (1999). Defining versus describing the nature of science: A pragmatic analysis for classroom teachers and science educators. Science Education, 83(4), 493-509.
    Snow, C. P. (1998). The two cultures. Cambridge: The Cambridge University Press.
    Solomon, J., Duveen, J., Scot, L., & McCarthy, S. (1992). Teaching about the nature of science through history: Action research in the classroom. Journal of Research in Science Teaching, 29(4), 409-421.
    Shapin, S. (1996). The scientific revolution. Chicago: The University of Chicago.
    Stone, C. A. (1998). The metaphor of scaffolding: Its utility for the field of learning disabilities. Journal of Learning Disabilities, 31, 344-364.
    Strauss, A. L., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA: Sage.
    Thomas, G. P. (2013). Changing the metacognative orientation of a classroom environment to stimulate metacognitive reflection regarding the nature of physics learning. International Journal of Science Education, 35(7), 1183-1207.
    Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.
    Tyler, R. (1949). Basic principles of curriculum and instruction. Chicago: The University of Chicago Press.
    van Dijk, E. M. (2013). Book review: Myint Swe Khine (Ed): Advances in nature of science research: Concepts and methodologies. Science & Education, 22, 881-886.
    Walker, J. P., & Sampson.V. (2013). Learning to argue and arguing to learn: Argument driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments. Journal of Research in Science Teaching, 50(5), 561-596.
    Walls, L. (2012). Third grade African American students' views of the nature of science. Journal of Research in Science Teaching, 49(1), 1-37.
    Wang, H. A., & Marsh, D. D. (2002). Science introduction with humanistic twist: Teachers' perception and practice in using the history of science in their classroom. Science & Education, 11(2), 169-189.
    Yip, D.-Y. (2006). Using history to promote understanding of nature of science in science teachers. Teaching Education, 17(2), 157-166.

    下載圖示
    QR CODE