簡易檢索 / 詳目顯示

研究生: 施承均
Shi, Cheng-Jun
論文名稱: 探討在添加劑控制下高醯基香豆素與烯基炔酸酯的 1,4-麥可及 1,7-偶極反轉磷催化位置選擇性加成反應
Additive Controlled regiodivergent 1,7- and 1,4-Addition Reactions of 3-Homoacyl Coumarins to Vinyl alkynoates Catalyzed by Phosphine
指導教授: 林文偉
Lin, Wen-Wei
口試委員: 林文偉
Lin, Wen-wei
姚清發
Yao, Ching-Fa
李文山
Li, Wen-Shan
口試日期: 2024/06/24
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 149
中文關鍵詞: 磷催化位置選擇性
英文關鍵詞: phosphine catalysis, regiodivergent
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400831
論文種類: 學術論文
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要i Abstractii 目錄iii 圖目錄vi 表目錄ix 第壹章 緒論1 1.1 研究動機1 1.2 路易士鹼催化反應1 1.3 烯炔酸酯與連烯酸酯在磷催化下的Michael加成反應4 1.4 烯炔酸酯與連烯酸酯在磷催化下的1,7- 和 1,5-偶極反轉加成反應10 1.5 烯炔酸酯與連烯酸酯在胺催化下的Michael加成反應15 1.6 香豆素之應用性及反應類型15 1.7 研究問題實驗設計16 第貳章 實驗結果:有機之部19 2.1 烯基炔酸酯之磷催化Michael加成反應19 2.1.1 Michael 加成條件優化19 2.1.2 取代基效應23 2.1.3 合成應用24 2.1.4 推測之反應機構24 2.2 烯基炔酸酯之磷催化1,7(偶極反轉)加成反應25 2.2.1 磷催化1,7(偶極反轉)加成反應之條件優化25 2.2.2 取代基效應29 2.2.3 合成應用30 2.2.4 推測之反應機構30 2.3 烯基炔酸酯之胺催化Michael加成反應32 2.4 控制實驗33 2.4.1 1,4/1,7-加成產物轉變實驗33 2.4.2 磷中間體生成反應34 2.5 小結37 第參章 磷催化1,4及1,7加成反應之理論計算模擬39 3.1 前言39 3.2 磷試劑對炔酸酯或聯烯酸酯之加成反應39 3.3 香豆素陰離子對炔酸酯或磷烯酸酯之加成反應42 3.4 香豆素陰離子對共軛烯機鏻鹽之加成反應44 3.5 小結45 第肆章 結論47 第伍章 未來研究規劃49 5.1 有機之部49 5.1.1 近期實驗規劃49 5.1.2 研究規劃50 第陸章 光譜選析53 6.1 前言53 6.2 化合物3之光譜分析53 6.3 化合物4之光譜分析60 第柒章 Experimental section67 7.1 Organic part67 7.1.1 General information68 7.1.2 Preparation of ethyl hex-5-en-2-ynoate 147 (炔酸酯之製備)68 7.1.3 Preparation of homo-acyl coumarins 248(香豆素之製備)68 7.1.4 Typical procedure for phosphine catalyzed Michael addition (TP-1)69 7.1.5 Typical procedure for phosphine catalyzed 1,7-addition (TP-2)81 7.1.6 Preparation of (E)-6,8-dichloro-3-(2-oxo-6-phenyl-4-(prop-1-en-1-yo)-2H-pyran-5-yl)-2H-chromen-2-one (5)93 7.1.7 ethyl (2E,4E)-8-hydroxy-7-(2-oxo-2H-chromen-3-yl)-8-phenylocta-2,4-dienoate (6)94 7.1.8 Preparation of (E/Z)-(1-ethoxy-1-oxohexa-2,5-dien-3-yl)triphenylphosphonium (7)95 7.2 Computational part98 7.2.1 Computational method98 7.2.2 Calculated energy and enthalpy of optimized structure98 第捌章 參考文獻99 附錄一、 Check list103 附錄二、 1H/13C NMR光譜圖106 附錄三、 X-Ray結晶繞射結構134 附錄四、 計算結構座標 137

    1. Feng, J.; Huang, Y., Phosphine-catalyzed (3+2)/(2+3) sequential annulation involving a triple nucleophilic addition reaction of γ-vinyl allenoates. Chem. Commun. 2019, 55, 14011-14014.
    2. Feng, J.;  Chen, Y.;  Qin, W.; Huang, Y., Phosphine-Catalyzed (3 + 2)/(3 + 2) Sequential Annulation of γ-Vinyl Allenoates: Access to Fused Carbocycles. Org. Lett. 2020, 22, 433-437.
    3. Li, X.; Huang, Y., Phosphine-catalyzed sequential (2+3)/(2+4) annulation of γ-vinyl allenoates: access to the synthesis of chromeno[4,3-b]pyrroles. Chem. Commun. 2021, 57, 9934-9937.
    4. Li, X.;  Cai, W.; Huang, Y., One-Pot Synthesis of 2,3,6-Trisubstituted Pyridines by Phosphine-Catalyzed Annulation of γ-Vinyl Allenoates with Enamino Esters Followed by DDQ-Promoted Oxidative Aromatization. Adv. Synth. Catal. 2022, 364, 1879-1883.
    5. Feng, J.; Huang, Y., Phosphine-Catalyzed Remote 1,7-Addition for Synthesis of Diene Carboxylates. ACS Catal. 2020, 10, 3541-3547.
    6. 許瀞文. I.經添加劑控制膦催化γ-乙烯基炔酸酯之化學選擇性1,4-/1,7-加成反應建構含3-高醯基香豆素之二烯羧酸酯II.經硫脲催化亞烷基米氏酸與亞胺葉立德進行鏡像選擇性級聯反應合成𠳭酮[4,3-b]吡咯啶. 國立臺灣師範大學, 台北市, 2022.
    7. 黃炫瑞. I. 發展 γ-乙烯基炔酸酯與 3-高醯基香豆素之化學選擇性 1,4-/1,7-膦催化加成反應建構二烯羧酸酯II. 亞烷基米氏酸作為接受者-供體-接受者反應物經硫脲催化劑進行有機不對稱 (3+2) 環加成/環化反應. 國立臺灣師範大學, 2023.
    8. Fan, Y. C.; Kwon, O., Beyond the Morita–Baylis–Hillman Reaction (n?→?π*). In Lewis Base Catalysis in Organic Synthesis, 2016; pp 715-804.
    9. Guo, H.;  Fan, Y. C.;  Sun, Z.;  Wu, Y.; Kwon, O., Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049-10293.
    10. Rauhut, M. M. C., H., Preparation of dialkyl 2-methyleneglutarates. U.S. Patent 3074999, 1963;. Chem. Abstr. 1963, 58, 66109.
    11. Morita, K.-i.;  Suzuki, Z.; Hirose, H., A tertiary phosphine-catalyzed reaction of acrylic compounds with aldehydes. Bull. Chem. Soc. Jpn. 1968, 41, 2815-2815.
    12. Baylis, A. B. H., M. E. D., Process for producing acrylic compounds. German Patent 2155113, 1972;. Chem. Abstr. 1972, 77, 34174.
    13.  He, L.;  Jian, T.-Y.; Ye, S., N-Heterocyclic Carbene Catalyzed Aza-Morita−Baylis−Hillman Reaction of Cyclic Enones with N-Tosylarylimines. J. Org. Chem. 2007, 72, 7466-7468.
    14. Inanaga, J.;  Baba, Y.; Hanamoto, T., Organic Synthesis with Trialkylphosphine Catalysts. Conjugate Addition of Alcohols to α,β-Unsaturated Alkynic Acid Esters. Chem. Lett. 1993, 22, 241-244.
    15. Grossman, R. B.;  Comesse, S.;  Rasne, R. M.;  Hattori, K.; Delong, M. N., Phosphoramidites Are Efficient, Green Organocatalysts for the Michael Reaction. Mechanistic Insights into the Phosphorus-Catalyzed Michael Reaction of Alkynones and Implications for Asymmetric Catalysis. J. Org. Chem. 2003, 68, 871-874.
    16. Trost, B. M.; Li, C.-J., Novel "Umpolung" in C-C Bond Formation Catalyzed by Triphenylphosphine. J. Am. Chem. Soc. 1994, 116, 3167-3168.
    17. Trost, B. M.; Li, C.-J., Phosphine-Catalyzed Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates. J. Am. Chem. Soc. 1994, 116, 10819-10820.
    18. Trost, B. M.; Dake, G. R., Nitrogen Pronucleophiles in the Phosphine-Catalyzed γ-Addition Reaction. J. Org. Chem. 1997, 62, 5670-5671.
    19. Xu, S.;  Zhou, L.;  Zeng, S.;  Ma, R.;  Wang, Z.; He, Z., Phosphine-Mediated Olefination between Aldehydes and Allenes: An Efficient Synthesis of Trisubstituted 1,3-Dienes with High E-Selectivity. Org. Lett. 2009, 11, 3498-3501.
    20. Gandi, V. R.; Lu, Y., Phosphine-catalyzed regioselective Michael addition to allenoates. Chem. Commun. 2015, 51, 16188-16190.
    21. Vaishanv, N. K.;  Zaheer, M. K.;  Kant, R.; Mohanan, K., Phosphine-Catalyzed β-Selective Conjugate Addition of α-Fluoro-β-ketoamides to Allenic Esters. Eur. J. Org. Chem. 2019, 2019, 6138-6142.
    22. Liu, Y.-L.;  Wang, X.-P.;  Wei, J.; Li, Y., PPh3-catalyzed β-selective addition of α-fluoro β-dicarbonyl compounds to allenoates. Tetrahedron 2022, 103, 132577.
    23. Szeto, J.;  Sriramurthy, V.; Kwon, O., Phosphine-Initiated General Base Catalysis: Facile Access to Benzannulated 1,3-Diheteroatom Five-Membered Rings via Double-Michael Reactions of Allenes. Org. Lett. 2011, 13, 5420-5423.
    24. Kwak, S.;  Choi, J.;  Han, J.; Lee, S. Y., Regio- and Stereoselective Addition of Secondary Phosphine Oxides to Allenoates Catalyzed by Main-Group Lewis Pairs. ACS Catal. 2022, 12, 212-218.
    25. Zhang, C.; Lu, X., Umpolung Addition Reaction of Nucleophiles to 2,3-Butadienoates Catalyzed by a Phosphine. Synlett 1995, 1995, 645-646.
    26. Smith, S. W.; Fu, G. C., Asymmetric Carbon−Carbon Bond Formation γ to a Carbonyl Group: Phosphine-Catalyzed Addition of Nitromethane to Allenes. J. Am. Chem. Soc. 2009, 131, 14231-14233.
    27. Sinisi, R.;  Sun, J.; Fu, G. C., Phosphine-catalyzed asymmetric additions of malonate esters to γ-substituted allenoates and allenamides. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20652-20654.
    28. Kalek, M.; Fu, G. C., Phosphine-Catalyzed Doubly Stereoconvergent γ-Additions of Racemic Heterocycles to Racemic Allenoates: The Catalytic Enantioselective Synthesis of Protected α,α-Disubstituted α-Amino Acid Derivatives. J. Am. Chem. Soc. 2015, 137, 9438-9442.
    29. Wang, T.;  Yu, Z.;  Hoon, D. L.;  Phee, C. Y.;  Lan, Y.; Lu, Y., Regiodivergent Enantioselective γ-Additions of Oxazolones to 2,3-Butadienoates Catalyzed by Phosphines: Synthesis of α,α-Disubstituted α-Amino Acids and N,O-Acetal Derivatives. J. Am. Chem. Soc. 2016, 138, 265-271.
    30. Ning, L.-W.;  Jin, Y.-H.;  Wang, R.-J.;  Zhang, Y.; Li, Y., DBU-catalyzed selective β-addition of α-fluoro nitroalkanes to allenoates. J. Fluorine Chem. 2024, 274, 110255.
    31. Saunders, L. B.; Miller, S. J., Divergent Reactivity in Amine- and Phosphine-Catalyzed C–C Bond-Forming Reactions of Allenoates with 2,2,2-Trifluoroacetophenones. ACS Catal. 2011, 1, 1347-1350.
    32. Evans, C. A.; Miller, S. J., Amine-Catalyzed Coupling of Allenic Esters to α,β-Unsaturated Carbonyls. J. Am. Chem. Soc. 2003, 125, 12394-12395.
    33. Musa, M. A.;  Cooperwood, J. S.; Khan, M. O., A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem. 2008, 15, 2664-79.
    34. Venugopala, K. N.;  Rashmi, V.; Odhav, B., Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. BioMed Res. Int. 2013, 2013, 963248.
    35. Cao, D.;  Liu, Z.;  Verwilst, P.;  Koo, S.;  Jangjili, P.;  Kim, J. S.; Lin, W., Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403-10519.
    36. Wang, M.;  Tseng, P.-Y.;  Chi, W.-J.;  Suresh, S.;  Edukondalu, A.;  Chen, Y.-R.; Lin, W., Diversity-Oriented Synthesis of Spirocyclohexene Indane-1,3-diones and Coumarin-Fused Cyclopentanes via an Organobase-Controlled Cascade Reaction. Adv. Synth. Catal. 2020, 362, 3407-3415.
    37.  Vagh, S. S.;  Karanam, P.;  Liao, C.-C.;  Lin, T.-H.;  Liou, Y.-C.;  Edukondalu, A.;  Chen, Y.-R.; Lin, W., Enantioselective Construction of Spirooxindole-Fused Cyclopenta[c]chromen-4-ones Bearing Five Contiguous Stereocenters via a Stepwise (3+2) Cycloaddition. Adv. Synth. Catal. 2020, 362, 1679-1685.
    38. Yan, J.;  Zheng, X.;  Zheng, Y.;  Zhan, R.; Huang, H., Asymmetric Michael reaction of 3-homoacyl coumarins with chromone-fused dienes toward enantioenriched coumarin chromone skeletons. Org. Biomol. Chem. 2021, 19, 8102-8107.
    39. Liptak, M. D.;  Gross, K. C.;  Seybold, P. G.;  Feldgus, S.; Shields, G. C., Absolute pKa Determinations for Substituted Phenols. J. Am. Chem. Soc. 2002, 124, 6421-6427.
    40. Baidya, M.; Mayr, H., Nucleophilicities and carbon basicities of DBU and DBN. Chem. Commun. 2008, 1792-1794.
    41. Huang, G.-T.;  Lankau, T.; Yu, C.-H., A Computational Study: Reactivity Difference between Phosphine- and Amine-Catalyzed Cycloadditions of Allenoates and Enones. J. Org. Chem. 2014, 79, 1700-1711.
    42. Huang, G.-T.;  Lankau, T.; Yu, C.-H., A computational study of the activation of allenoates by Lewis bases and the reactivity of intermediate adducts. Org. Biomol. Chem. 2014, 12, 7297-7309.
    43. Zhu, X.-F.;  Henry, C. E.; Kwon, O., Stable Tetravalent Phosphonium Enolate Zwitterions. J. Am. Chem. Soc. 2007, 129, 6722-6723.
    44. Dudding, T.;  Kwon, O.; Mercier, E., Theoretical Rationale for Regioselection in Phosphine-Catalyzed Allenoate Additions to Acrylates, Imines, and Aldehydes. Org. Lett. 2006, 8, 3643-3646.
    45. Xia, Y.;  Liang, Y.;  Chen, Y.;  Wang, M.;  Jiao, L.;  Huang, F.;  Liu, S.;  Li, Y.; Yu, Z.-X., An Unexpected Role of a Trace Amount of Water in Catalyzing Proton Transfer in Phosphine-Catalyzed (3 + 2) Cycloaddition of Allenoates and Alkenes. J. Am. Chem. Soc. 2007, 129, 3470-3471.
    46. Liang, Y.;  Liu, S.;  Xia, Y.;  Li, Y.; Yu, Z.-X., Mechanism, Regioselectivity, and the Kinetics of Phosphine-Catalyzed [3+2] Cycloaddition Reactions of Allenoates and Electron-Deficient Alkenes. Chemistry – A European Journal 2008, 14, 4361-4373.
    47. Bieber, L. W.; da Silva, M. F., Copper catalyzed regioselective coupling of allylic halides and alkynes promoted by weak inorganic bases. Tetrahedron Lett. 2007, 48, 7088-7090.
    48. Chen, Y.-R.;  Ganapuram, M. R.;  Hsieh, K.-H.;  Chen, K.-H.;  Karanam, P.;  Vagh, S. S.;  Liou, Y.-C.; Lin, W., 3-Homoacyl coumarin: an all carbon 1,3-dipole for enantioselective concerted (3+2) cycloaddition. Chem. Commun. 2018, 54, 12702-12705.
    49. An, F.;  Jangra, H.;  Wei, Y.;  Shi, M.;  Zipse, H.; Ofial, A. R., Reactivities of allenic and olefinic Michael acceptors towards phosphines. Chem. Commun. 2022, 58, 3358-3361.
    50. Frisch, M. J.;  Trucks, G. W.;  Schlegel, H. B.;  Scuseria, G. E.;  Robb, M. A.;  Cheeseman, J. R.;  Scalmani, G.;  Barone, V.;  Petersson, G. A.;  Nakatsuji, H.;  Li, X.;  Caricato, M.;  Marenich, A. V.;  Bloino, J.;  Janesko, B. G.;  Gomperts, R.;  Mennucci, B.;  Hratchian, H. P.;  Ortiz, J. V.;  Izmaylov, A. F.;  Sonnenberg, J. L.;  Williams;  Ding, F.;  Lipparini, F.;  Egidi, F.;  Goings, J.;  Peng, B.;  Petrone, A.;  Henderson, T.;  Ranasinghe, D.;  Zakrzewski, V. G.;  Gao, J.;  Rega, N.;  Zheng, G.;  Liang, W.;  Hada, M.;  Ehara, M.;  Toyota, K.;  Fukuda, R.;  Hasegawa, J.;  Ishida, M.;  Nakajima, T.;  Honda, Y.;  Kitao, O.;  Nakai, H.;  Vreven, T.;  Throssell, K.;  Montgomery Jr., J. A.;  Peralta, J. E.;  Ogliaro, F.;  Bearpark, M. J.;  Heyd, J. J.;  Brothers, E. N.;  Kudin, K. N.;  Staroverov, V. N.;  Keith, T. A.;  Kobayashi, R.;  Normand, J.;  Raghavachari, K.;  Rendell, A. P.;  Burant, J. C.;  Iyengar, S. S.;  Tomasi, J.;  Cossi, M.;  Millam, J. M.;  Klene, M.;  Adamo, C.;  Cammi, R.;  Ochterski, J. W.;  Martin, R. L.;  Morokuma, K.;  Farkas, O.;  Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
    51. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241.

    無法下載圖示 電子全文延後公開
    2029/06/24
    QR CODE