研究生: |
施承均 Shi, Cheng-Jun |
---|---|
論文名稱: |
探討在添加劑控制下高醯基香豆素與烯基炔酸酯的 1,4-麥可及 1,7-偶極反轉磷催化位置選擇性加成反應 Additive Controlled regiodivergent 1,7- and 1,4-Addition Reactions of 3-Homoacyl Coumarins to Vinyl alkynoates Catalyzed by Phosphine |
指導教授: |
林文偉
Lin, Wen-Wei |
口試委員: |
林文偉
Lin, Wen-wei 姚清發 Yao, Ching-Fa 李文山 Li, Wen-Shan |
口試日期: | 2024/06/24 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 149 |
中文關鍵詞: | 磷催化 、位置選擇性 |
英文關鍵詞: | phosphine catalysis, regiodivergent |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400831 |
論文種類: | 學術論文 |
相關次數: | 點閱:44 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Feng, J.; Huang, Y., Phosphine-catalyzed (3+2)/(2+3) sequential annulation involving a triple nucleophilic addition reaction of γ-vinyl allenoates. Chem. Commun. 2019, 55, 14011-14014.
2. Feng, J.; Chen, Y.; Qin, W.; Huang, Y., Phosphine-Catalyzed (3 + 2)/(3 + 2) Sequential Annulation of γ-Vinyl Allenoates: Access to Fused Carbocycles. Org. Lett. 2020, 22, 433-437.
3. Li, X.; Huang, Y., Phosphine-catalyzed sequential (2+3)/(2+4) annulation of γ-vinyl allenoates: access to the synthesis of chromeno[4,3-b]pyrroles. Chem. Commun. 2021, 57, 9934-9937.
4. Li, X.; Cai, W.; Huang, Y., One-Pot Synthesis of 2,3,6-Trisubstituted Pyridines by Phosphine-Catalyzed Annulation of γ-Vinyl Allenoates with Enamino Esters Followed by DDQ-Promoted Oxidative Aromatization. Adv. Synth. Catal. 2022, 364, 1879-1883.
5. Feng, J.; Huang, Y., Phosphine-Catalyzed Remote 1,7-Addition for Synthesis of Diene Carboxylates. ACS Catal. 2020, 10, 3541-3547.
6. 許瀞文. I.經添加劑控制膦催化γ-乙烯基炔酸酯之化學選擇性1,4-/1,7-加成反應建構含3-高醯基香豆素之二烯羧酸酯II.經硫脲催化亞烷基米氏酸與亞胺葉立德進行鏡像選擇性級聯反應合成𠳭酮[4,3-b]吡咯啶. 國立臺灣師範大學, 台北市, 2022.
7. 黃炫瑞. I. 發展 γ-乙烯基炔酸酯與 3-高醯基香豆素之化學選擇性 1,4-/1,7-膦催化加成反應建構二烯羧酸酯II. 亞烷基米氏酸作為接受者-供體-接受者反應物經硫脲催化劑進行有機不對稱 (3+2) 環加成/環化反應. 國立臺灣師範大學, 2023.
8. Fan, Y. C.; Kwon, O., Beyond the Morita–Baylis–Hillman Reaction (n?→?π*). In Lewis Base Catalysis in Organic Synthesis, 2016; pp 715-804.
9. Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O., Phosphine Organocatalysis. Chem. Rev. 2018, 118, 10049-10293.
10. Rauhut, M. M. C., H., Preparation of dialkyl 2-methyleneglutarates. U.S. Patent 3074999, 1963;. Chem. Abstr. 1963, 58, 66109.
11. Morita, K.-i.; Suzuki, Z.; Hirose, H., A tertiary phosphine-catalyzed reaction of acrylic compounds with aldehydes. Bull. Chem. Soc. Jpn. 1968, 41, 2815-2815.
12. Baylis, A. B. H., M. E. D., Process for producing acrylic compounds. German Patent 2155113, 1972;. Chem. Abstr. 1972, 77, 34174.
13. He, L.; Jian, T.-Y.; Ye, S., N-Heterocyclic Carbene Catalyzed Aza-Morita−Baylis−Hillman Reaction of Cyclic Enones with N-Tosylarylimines. J. Org. Chem. 2007, 72, 7466-7468.
14. Inanaga, J.; Baba, Y.; Hanamoto, T., Organic Synthesis with Trialkylphosphine Catalysts. Conjugate Addition of Alcohols to α,β-Unsaturated Alkynic Acid Esters. Chem. Lett. 1993, 22, 241-244.
15. Grossman, R. B.; Comesse, S.; Rasne, R. M.; Hattori, K.; Delong, M. N., Phosphoramidites Are Efficient, Green Organocatalysts for the Michael Reaction. Mechanistic Insights into the Phosphorus-Catalyzed Michael Reaction of Alkynones and Implications for Asymmetric Catalysis. J. Org. Chem. 2003, 68, 871-874.
16. Trost, B. M.; Li, C.-J., Novel "Umpolung" in C-C Bond Formation Catalyzed by Triphenylphosphine. J. Am. Chem. Soc. 1994, 116, 3167-3168.
17. Trost, B. M.; Li, C.-J., Phosphine-Catalyzed Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates. J. Am. Chem. Soc. 1994, 116, 10819-10820.
18. Trost, B. M.; Dake, G. R., Nitrogen Pronucleophiles in the Phosphine-Catalyzed γ-Addition Reaction. J. Org. Chem. 1997, 62, 5670-5671.
19. Xu, S.; Zhou, L.; Zeng, S.; Ma, R.; Wang, Z.; He, Z., Phosphine-Mediated Olefination between Aldehydes and Allenes: An Efficient Synthesis of Trisubstituted 1,3-Dienes with High E-Selectivity. Org. Lett. 2009, 11, 3498-3501.
20. Gandi, V. R.; Lu, Y., Phosphine-catalyzed regioselective Michael addition to allenoates. Chem. Commun. 2015, 51, 16188-16190.
21. Vaishanv, N. K.; Zaheer, M. K.; Kant, R.; Mohanan, K., Phosphine-Catalyzed β-Selective Conjugate Addition of α-Fluoro-β-ketoamides to Allenic Esters. Eur. J. Org. Chem. 2019, 2019, 6138-6142.
22. Liu, Y.-L.; Wang, X.-P.; Wei, J.; Li, Y., PPh3-catalyzed β-selective addition of α-fluoro β-dicarbonyl compounds to allenoates. Tetrahedron 2022, 103, 132577.
23. Szeto, J.; Sriramurthy, V.; Kwon, O., Phosphine-Initiated General Base Catalysis: Facile Access to Benzannulated 1,3-Diheteroatom Five-Membered Rings via Double-Michael Reactions of Allenes. Org. Lett. 2011, 13, 5420-5423.
24. Kwak, S.; Choi, J.; Han, J.; Lee, S. Y., Regio- and Stereoselective Addition of Secondary Phosphine Oxides to Allenoates Catalyzed by Main-Group Lewis Pairs. ACS Catal. 2022, 12, 212-218.
25. Zhang, C.; Lu, X., Umpolung Addition Reaction of Nucleophiles to 2,3-Butadienoates Catalyzed by a Phosphine. Synlett 1995, 1995, 645-646.
26. Smith, S. W.; Fu, G. C., Asymmetric Carbon−Carbon Bond Formation γ to a Carbonyl Group: Phosphine-Catalyzed Addition of Nitromethane to Allenes. J. Am. Chem. Soc. 2009, 131, 14231-14233.
27. Sinisi, R.; Sun, J.; Fu, G. C., Phosphine-catalyzed asymmetric additions of malonate esters to γ-substituted allenoates and allenamides. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20652-20654.
28. Kalek, M.; Fu, G. C., Phosphine-Catalyzed Doubly Stereoconvergent γ-Additions of Racemic Heterocycles to Racemic Allenoates: The Catalytic Enantioselective Synthesis of Protected α,α-Disubstituted α-Amino Acid Derivatives. J. Am. Chem. Soc. 2015, 137, 9438-9442.
29. Wang, T.; Yu, Z.; Hoon, D. L.; Phee, C. Y.; Lan, Y.; Lu, Y., Regiodivergent Enantioselective γ-Additions of Oxazolones to 2,3-Butadienoates Catalyzed by Phosphines: Synthesis of α,α-Disubstituted α-Amino Acids and N,O-Acetal Derivatives. J. Am. Chem. Soc. 2016, 138, 265-271.
30. Ning, L.-W.; Jin, Y.-H.; Wang, R.-J.; Zhang, Y.; Li, Y., DBU-catalyzed selective β-addition of α-fluoro nitroalkanes to allenoates. J. Fluorine Chem. 2024, 274, 110255.
31. Saunders, L. B.; Miller, S. J., Divergent Reactivity in Amine- and Phosphine-Catalyzed C–C Bond-Forming Reactions of Allenoates with 2,2,2-Trifluoroacetophenones. ACS Catal. 2011, 1, 1347-1350.
32. Evans, C. A.; Miller, S. J., Amine-Catalyzed Coupling of Allenic Esters to α,β-Unsaturated Carbonyls. J. Am. Chem. Soc. 2003, 125, 12394-12395.
33. Musa, M. A.; Cooperwood, J. S.; Khan, M. O., A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem. 2008, 15, 2664-79.
34. Venugopala, K. N.; Rashmi, V.; Odhav, B., Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. BioMed Res. Int. 2013, 2013, 963248.
35. Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W., Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403-10519.
36. Wang, M.; Tseng, P.-Y.; Chi, W.-J.; Suresh, S.; Edukondalu, A.; Chen, Y.-R.; Lin, W., Diversity-Oriented Synthesis of Spirocyclohexene Indane-1,3-diones and Coumarin-Fused Cyclopentanes via an Organobase-Controlled Cascade Reaction. Adv. Synth. Catal. 2020, 362, 3407-3415.
37. Vagh, S. S.; Karanam, P.; Liao, C.-C.; Lin, T.-H.; Liou, Y.-C.; Edukondalu, A.; Chen, Y.-R.; Lin, W., Enantioselective Construction of Spirooxindole-Fused Cyclopenta[c]chromen-4-ones Bearing Five Contiguous Stereocenters via a Stepwise (3+2) Cycloaddition. Adv. Synth. Catal. 2020, 362, 1679-1685.
38. Yan, J.; Zheng, X.; Zheng, Y.; Zhan, R.; Huang, H., Asymmetric Michael reaction of 3-homoacyl coumarins with chromone-fused dienes toward enantioenriched coumarin chromone skeletons. Org. Biomol. Chem. 2021, 19, 8102-8107.
39. Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C., Absolute pKa Determinations for Substituted Phenols. J. Am. Chem. Soc. 2002, 124, 6421-6427.
40. Baidya, M.; Mayr, H., Nucleophilicities and carbon basicities of DBU and DBN. Chem. Commun. 2008, 1792-1794.
41. Huang, G.-T.; Lankau, T.; Yu, C.-H., A Computational Study: Reactivity Difference between Phosphine- and Amine-Catalyzed Cycloadditions of Allenoates and Enones. J. Org. Chem. 2014, 79, 1700-1711.
42. Huang, G.-T.; Lankau, T.; Yu, C.-H., A computational study of the activation of allenoates by Lewis bases and the reactivity of intermediate adducts. Org. Biomol. Chem. 2014, 12, 7297-7309.
43. Zhu, X.-F.; Henry, C. E.; Kwon, O., Stable Tetravalent Phosphonium Enolate Zwitterions. J. Am. Chem. Soc. 2007, 129, 6722-6723.
44. Dudding, T.; Kwon, O.; Mercier, E., Theoretical Rationale for Regioselection in Phosphine-Catalyzed Allenoate Additions to Acrylates, Imines, and Aldehydes. Org. Lett. 2006, 8, 3643-3646.
45. Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X., An Unexpected Role of a Trace Amount of Water in Catalyzing Proton Transfer in Phosphine-Catalyzed (3 + 2) Cycloaddition of Allenoates and Alkenes. J. Am. Chem. Soc. 2007, 129, 3470-3471.
46. Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-X., Mechanism, Regioselectivity, and the Kinetics of Phosphine-Catalyzed [3+2] Cycloaddition Reactions of Allenoates and Electron-Deficient Alkenes. Chemistry – A European Journal 2008, 14, 4361-4373.
47. Bieber, L. W.; da Silva, M. F., Copper catalyzed regioselective coupling of allylic halides and alkynes promoted by weak inorganic bases. Tetrahedron Lett. 2007, 48, 7088-7090.
48. Chen, Y.-R.; Ganapuram, M. R.; Hsieh, K.-H.; Chen, K.-H.; Karanam, P.; Vagh, S. S.; Liou, Y.-C.; Lin, W., 3-Homoacyl coumarin: an all carbon 1,3-dipole for enantioselective concerted (3+2) cycloaddition. Chem. Commun. 2018, 54, 12702-12705.
49. An, F.; Jangra, H.; Wei, Y.; Shi, M.; Zipse, H.; Ofial, A. R., Reactivities of allenic and olefinic Michael acceptors towards phosphines. Chem. Commun. 2022, 58, 3358-3361.
50. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
51. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241.