研究生: |
黃敬儒 |
---|---|
論文名稱: |
整合顧客回應與退貨行為之直銷決策支援模型 Decision Support Model of Customer Response and Return Behavior for Direct Marketing |
指導教授: | 施人英 |
學位類別: |
碩士 Master |
系所名稱: |
全球經營與策略研究所 Graduate Institute of Global Business and Strategy |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 直效行銷 、資料探勘 、顧客回應 、退貨行為 |
英文關鍵詞: | direct marketing, data mining, customer response, return behavior |
DOI URL: | https://doi.org/10.6345/NTNU202205425 |
論文種類: | 學術論文 |
相關次數: | 點閱:277 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著電子商務技術之進步,零售業也隨之興起透過虛擬通路銷售產品,在這種趨勢之下也帶動了消費者購物習慣的改變,使得網路購物市場規模相當可觀。基於網路交易的特性,這種新興的商業模式除了快速吸引大量的消費者促使企業成長外,也為業者帶來了許多不確定性和不同的支出成本,因此,本研究將分別針對實行直效行銷時顧客名單的篩選以及購物後顧客之退貨情形進行探討。
本研究藉由資料探勘技術進而了解回應行銷活動與具退貨行為之顧客特質,蒐集的變數除一般顧客基本輪廓,另包含於直效行銷領域中廣泛使用的RFM(最近一次消費、消費頻率、消費金額),以及影響退貨決策的產品種類與付款方式等變數。首先利用羅吉斯迴歸分析篩選出具影響力之相關變數,接著使用類神經網路進行預測模型建構,再以增益圖評估模型表現,並透過決策樹輔助規則呈現。
研究結果發現,顧客是否使用過廠商提供的折價優惠於回應及退貨兩模型中皆具相當影響力,可見與顧客互動的重要,此外,在規則呈現中,顧客之居住地、退貨率、產品偏好與付款方式等也具有相當重要性。且兩模型預測出之顧客名單有所重複,因此,在篩選寄送型錄之顧客名單時,若將退貨情形列入考慮,便可降低對高風險顧客之行銷活動,節省額外作業成本。
In recent years, with the advancement of e-commerce technology, retailers have begun selling products through virtual channels. Consumers have also changed their shopping habits under the trend, which increases the online shopping market scale. Based on characteristics of online transactions, the new business model not only fast obtain a large number of consumers to increase business growth, but also brought a lot of uncertainty and various expenditure for the online retailers. This study will probe into customer response and return behavior in direct marketing by data mining techniques.
The explanatory variables include general customer profile, RFM (recency, frequency, and monetary value), method of payment and product types, etc. Logistic regression analysis was be used to filter relevant variables, then both two prediction model were constructed by back propagation neural networks. Finally, decision tree algorithm was applied to reveal rules.
The result shows that whether customers using discount is a significant factor in both models. Moreover, attributes such as city, return ratio, preferences of payment and product also show importance when applying decision tree algorithms to explain the prediction models. Considering return behavior could avoid deal with high risk customer and decrease extra cost when firms make marketing decisions.
Alexandra, J. C. (2003), Creating customer knowledge competence: managing customer relationship management programs strategically, Industrial Marketing Management, 32(5), 375-383
Bult, J. and Wangsbeek, T. (1995). Optimal selection for direct mail. Marketing Science, 14(4), 378-394
Bhatia, A. (1999), Customer Relationship Management, 1st., N.Y.: toolbox Portal for CRM.
Baesens, B., Viaene, S., Poel, D., Vanthienen, J. (2002). Bayesian neural network learning for repeat purchase modeling in direct marketing. European Journal of Operation Research, 138(1), 191-211
Bechwati, N. N. & Siegel, W. S. (2005). The impact of the prechoice process on product returns, Journal of Marketing Research, 42(3), 358-367
Blattberg, R., Kim, B., & Neslin, S. (2008). Database Marketing: analyzing and managing customers. New York: Springer
Berry, M. and Linoff, G. (2011). Data Mining Techniques: for marketing sales and customer relationship management (3rd ed.), NY: Wiley Publishing
Bower, A. B. & Maxham III, J. G. (2012). Return shipping policies of online retailers: normative assumptions and long-term consequences of fee and free return. Journal of Marketing, 76(5), 110-124
Bahn, K. D. & Boyd, E. (2014). Information and its impact on consumers’ reactions to restrictive return policies. Journal of Retailing and Consumer Service, 21(4), 415-423
Crone, S. V., Lessman, S. & Stahlbock, R. (2006). The impact of preprocessing on data mining: an evaluation of classifier sensitivity in direct marketing. European Journal of Operational Research, 173(3), 781-800
Elsner, R., Kraft, M. & Huchzemeier, A. (2003). Optimizing Rhenania’s main-order business through dynamic multilevel modeling. Interfaces, 33(1), 50-66
Fayyad, U., Piatedtsky-Shapiro, G. and Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-54
Fitzpatrick, M. (2001). Statistical analysis for direct marketers. Direct Market, 64(4), 54-56
Gillett, P. L. (1970). A profile of urgent in-home shopper. Journal of Marketing, 34, 40-45
Galio, N. (1994). The new additions. Better Homes and Gardens, May
Gordon, I. (2006). Relationship demarketing: managing wasteful or worthless customer relationship. Ivey Business Journal, 70(4), 1-4
Hughes, A. M. (1996). The complete database marketer: second-generation strategies and techniques for tapping the power of your customer database. Chicago, Ill. : Irwin Professional
Hughes, M. A. (2000). Strategic database marketing: the masterplan for starting and managing a profitable customer-based marketing program. NY: McGraw-Hill
Hunt & Lambe, C. J. (2000). Marketing’s Contribution to Business Strategy: Market Orientation, Relationship Marketing, and Resource-Advantage Theory. International Journal of Management Reviews, 2(1), 17–34.
Han, J. & Kamber, M. (2001). Data Mining: Concepts and Techniques. US: Morgan Kaufmann Publishers
Hughes, A. (2006). Strategic database marketing. (3rd ed.). New York: McGraw-Hill
Harridge-March, S. (2008). Direct marketing and relationships: An opinion piece. Direct Marketing: An International Journal, 2(4), 192-198
Johnson, B. (2003). Bringing it back: mastering the last frontier of corporate efficiency. Materials Management and Distribution, 48(7), 36
Kotler, P. & Levy, S. J. (1971). Demarketing, yes demarketing. Havard Business Review Nov.-Dec., 74-80
Kahan, R. (1998). Using database marketing techniques to enhance your one-to-one marketing initiatives. Journal of Consumer Marketing, 15(5), 491-493
Kumar, V. and Reinartz, W. J. (2006). Customer relationship management: A databased approach. Hoboken: John Wiley & Sons, Inc.
King, T., Dennis, C. & Wright, L. T. (2008). Myopia, Customer returns and theory of planned behavior. Journal of Marketing Management, 24(1), 185-203
Ling, C. X. and Li, C. (1998). Data mining for direct marketing: problems and solutions. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, 73–79.
Lach, J. (1999). Data Mining Digs In. American Demographics, July, pp38-40, 42-45.
Moriarty, R. T., and Swartz, G. S. (1988). Automation to Boost Sales and Marketing. Harvard Business Review, 67 (1), 100–108.
McCorkell, Graem (1997). Direct and database marketing. London: Kogan Page
Mollenkopf, D. A., Rabinovich, E., Laseter, T. M. & Boyer, K. K. (2007). Managing internet product retums: a focus on effective service operations. Decision Sciences, 38 (2), 215-50.
Olson, D., Cao, Q., Gu, C. & Lee, D. (2009). Comparison of customer response models. Service Business, 3(2), 117-130
Olson, D. L. & Chae, B. (2012). Direct marketing decision support through predictive customer response modeling. Decision Support System, 54, 443-451
Pine, B. J. (1999). Mass customization: The new frontier in business competition. Boston: Harvard Business School Press
Park, E. J., Kim, E. Y. & Forney, J. C. (2006). A structural model of fashion-oriented impulse buying behavior. Journal of Fashion Marketing and Management, 10(4), 433-446
RLEC projects (1999). Apparel Management Survey. Chicago, IL, Reverse Logistics Executive Council.
Stark, K. D. C. & Pfeiffer, D.U. (1999). The application of non-parametric techniques to solve classification problems in complex data sets in veterinary epidemiology. Intelligent Data Analysis, 3(1), 25-35
Suh, E. H., Noh, K.C. & Suh, C. K. (1999). Customer list segmentation using the combined response model. Expert System with Applications, 17(2), 89-97
Schmidt, R. A., Sturrock, F., Ward, P. & Lea-Greenwood, G. (1999). Deshopping - the art of illicit consumption. International Journal of Retail and Distribution Management, 27(8), 290-301
Swift, Ronald S. (2001). Accelerating customer relationships.Upper Saddle River, NJ: Prentice Hall.
Shaw, M., Subramaniam, C., Tan, G. & Welge M. (2001). Knowledge management and dataming for marketing. Decision Support System, 31,127-137
Sciarrotta, T. (2003). How philips reduces returns. Supply Chain Management Review, 7(6), 32
Speights, D. & Hilinski, M. (2013). Return fraud and abuse: how to protect profits. The Retail Equation, Feb.
Ture, M., Kurt, I., Kurum, A. T. & Ozdamarc, K. (2005). Comparing classification techniques for predicting essential hypertension. Expert Systems with Application, 29(3), 583-588
Urbanskienė, R., Žostautienė, D. & Virginija, C. (2008). The model of creation of customer relationship management system. Engineering Economics, 58(3), 51-59
Welles, G. (1986). We’re in the habit of impulse buying. USA Today
Wood, S. L. (2001). Remote purchase environment : the influence of return policy leniency on two-stage decision process. Journal of Marketing Research, 38(2), 157-169
Wargo, S. (2004). Consumer shopping issues. Dealerscope, 46(1), 22
Wolf, Alan (2012). CE Returns Cost Industry $17B in 2011: Report. Twice, 27 (1), 82.
Yang, A. (2004). How to develop new approaches to RFM segmentation. Journal of Targeting Measurement and Analysis for Marketing, 13(1), 50-60