研究生: |
許峯陽 Syu, Fong-Yang |
---|---|
論文名稱: |
整合全無機鈣鈦礦電阻式記憶體與光激發電池於光電積體電路之應用 Integration of all inorganic perovskite-based Resistive random access memory (RRAM) and Light emitting cell (LEC) for the application of optoelectronic integrated circuit |
指導教授: |
李亞儒
Lee, Ya-Ju |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 鈣鈦礦 、微光顯影 、常溫合成 、電阻式記憶體 、光激發電池 |
英文關鍵詞: | Perovskite, Lithography, Room temperature synthesis, Resistive random access memory, Light emitting cell |
DOI URL: | http://doi.org/10.6345/NTNU201900985 |
論文種類: | 學術論文 |
相關次數: | 點閱:238 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究常溫合成全無機鈣鈦礦CsPbBr3之鈣鈦礦光學材料特性與半導體記憶特性,用於發光與記憶體元件之應用。利用無機鈣鈦礦具有優良半導體的特性,我們以無機鈣鈦礦CsPbBr3製程薄膜元件,有發光與記憶之元件的效果。我們利用常溫合成無機鈣鈦礦的特性,並以X光繞射儀(XRD)、光激發螢光光譜(PL)、電子顯微鏡(SEM)用以鑑定材料之特性,最後製程多層結構鈣鈦礦元件。藉由微光顯影以提升元件特性,製作出匹配光激發電池(LEC)與可變電阻式記憶體(RRAM)的結合。通過觀察的I-V曲線,元件表現出設定電壓為5 V,復位電壓為-5 V,由此了解RRAM可以通過減緩缺陷累積來促進元件耐久性的優化。此外元件上的LEC在設定電壓為5 V發光,因此元件再同時間兼具RRAM與LEC的特性。
In this study, we use room temperature synthesis approach to grow CsPbBr3 film for the fabrications of Light emitting cell (LEC) and Resistive random access memory (RRAM). The material characteristics of inorganic perovskite were systematically studied and identified by using X -ray diffraction (XRD), photoluminescence (PL), and electron microscopy (SEM). Through the proper design that involves a series of photolithography and semiconductor fabrications, the CsPbBr3 perovskite LEC and RRAM devices were successfully integrated. Such integrated device exhibits the set voltage was 5 V, and reset voltage was -5 V by monitoring the I–V curves, and the understanding of RRAM can promote the optimization of device endurance by slowing the defect accumulation rate. In addition, the device was emitting the light on the set voltage 5 V, so the device would have both property of RRAM and LEC at the same time.
1.Dongjue Liu et al., Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device., ACS Appl. Mater. Interfaces, 9, pp.6171-6176, (2017)
2.Yan Wang et al., Synergies of Electrochemical Metallization and Valance Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching. Adv. Mater, 30, 1800327,(2018)
3.Jizhong Song et al., Quantum Dot Light-Emitting Diodes Based On Inorganic Perovskite Cesium Lead Halides Finished., Adv. Mater, 3 27(44) , ( 2015)
4.https://commons.wikimedia.org/wiki/File:PnJunction-LED-E.svg
5.C. R. M. Kagan et al., Science 286, 945,947 (1999).
6.M. Gratzel ., Nature Materials 13, 838-842 (2014).
7.A. Kojima et al., Journal of the American Chemical Society 13 et al.,1, 6050 (2009).
8.J. Werner et al., Journal of Physical Chemistry Letters 7, 161-166 (2016).
9.S. Wei et al., Chemical Communications 52, 7265-7268 (2016).
10.C. K. W, Moller, H.L. Nature 182 (1958).
11.https://cnx.org/resources/2b8da8e222954317cb6a8c2af9ecc7f2f899dab0/Object%2013c.jpg
12.https://en.wikipedia.org/wiki/Electroluminescence
13.https://zh.wikipedia.org/zh-tw/%E5%8F%AF%E8%AE%8A%E9
%9B%BB%E9%98%BB%E5%BC%8F%E8%A8%98%E6%86%B6%E9%AB%94
14.https://aip.scitation.org/doi/full/10.1063/1.4941061
15.Rainer Waser et al., Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater., 21, pp. 2632-2663, (2009)
16.T. C. Chang et al., Resistance Random Access Memory. Materials Today, 19, no. 5, (2016)
17.https://doi.org/10.1016/j.orgel.2019.03.019
18.https://zh.wikipedia.org/zh-tw/%E5%85%89%E5%88%BB%E6%9C%BA
19.http://niufood.niu.edu.tw/nano/analyze/pages.php?
ID=analyze
20.Ye Wu et al., Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors , Electronic Supplementary Material, ( 2017)