簡易檢索 / 詳目顯示

研究生: 黃子育
Tzu-Yu Huang
論文名稱: 薄板Ti-6Al-4V銲件殘留應力與角變形分析
A study on the residual stress and angular distortion of thin plate Ti-6Al-4V alloy weldments
指導教授: 鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 77
中文關鍵詞: 鈦合金殘留應力角變形Nd:YAG雷射銲接
英文關鍵詞: Ti-6Al-4V, Ti Alloy, Residual Stress, Angular Distortion, Nd: YAG, TIG
論文種類: 學術論文
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對鈦合金經過雷射銲接及TIG後銲接,探討其殘留應力及角變形之改變。實驗用的材料為Ti-6Al-4V鈦合金,材料厚度為1.2mm,銲接方式則採用Nd : YAG雷射銲接與惰性氣體鎢極電弧銲接(TIG),採取不添加任何填料的對接方式。銲接過後,再分別進行殘留應力量測及角變形量測。
      針對Ti-6Al-4V鈦合金以TIG銲接,同樣以不填料銲接方式發現,相同電壓下,以60A之電流及17cm/min走速進行銲接時,輸入之熱量較50A電流及13cm/min走速之銲接低,但熔融率相同,銲道之品質相近,兩組參數以角變形量測後,電流大走速快的銲件角變形較小,但與雷射銲件同樣以不填料銲接方式相比,雷射銲件之銲道比TIG銲件小許多,角變形也小很多。
    在殘留應力方面,TIG以60A之電流及17cm/min走速進行銲接後之殘留應力與50A電流及13cm/min走速之銲件相比,銲件之殘留應力分布區域相似,但50A電流及13cm/min走速之銲件殘留之拉應力較大,壓應力小,若與雷射銲件相比殘留應力分布區域相似,但雷射銲件之殘留應力均小於TIG銲件。

    This research used two different welding methods: TIG and Laser, to apply to Ti Alloy test pieces under the preset parameters to weld and to analyze the thermal stress and angular distortion. The material used for the test pieces was Ti Alloy (Ti-6A1-4V), which were 1.2 mm thick, and were adapted to butt joint to weld without using any fillets. The residual stress and angular distortion of the test pieces were then measured separately.
      The test pieces welded by TIG at constant voltage were tested by using two criterions: one was at 60 amperes current under 17cm/min travel speed; the other was at 50 amperes current under 13 cm/min travel speed with relatively larger capacities. These two kinds of test pieces, which were welded by TIG, had nearly the same fusion rate and welding quality. However, the pieces tested with relatively stronger currents and higher travel speed (60 amperes and 17 cm/min) had smaller angular distortion. Compared with using the Laser welding method to weld without using fillets, the welding size and angular distortion of the test pieces were much smaller than using the TIG ones.
      With regard to the residual stress, the results of using the TIG welding at the current of 60 amperes and the travel speed of 17 cm/min had roughly the same residual stress on hot zone as the welding at the current of 50 amperes and the travel speed of 13 cm/min. As with the aspect of tensile stress, the TIG welding at the current of 50 amperes and the travel speed of 13 cm/min had larger tensile stress and smaller compression stress. As compared with the Laser welding, TIG welding had similar residual stress distribution pattern in the test pieces. However, the residual stress in the Laser welding pieces was smaller than those in the TIG welding.

    中文摘要 I 英文摘要 II 誌謝 總目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究緣起 1 1.1.1 鈦金屬簡介 1 1.1.2 鈦金屬特性及應用 2 1.1.3 鈦金屬市場趨勢 4 1.2 研究動機 7 1.3 研究目的 8 第二章 文獻回顧 9 2.1 鈦合金介紹 9 2.1.1 鈦金屬物理性質 9 2.1.2 鈦合金種類 10 2.1.3 Ti-6Al-4V介紹 13 2.2 鈦合金之銲接性 15 2.2.1 TIG銲接 16 2.2.2 雷射銲接 17 2.3 銲接後之影響 21 2.3.1 銲後變形 21 2.3.2 銲接變形之種類 21 2.3.3 銲接殘留應力 24 2.3.4 銲接殘留應力之形成 24 2.4 殘留應力量測方法 27 第三章 實驗方法與步驟 37 3.1 實驗流程 37 3.2 材料成分及尺寸 39 3.2.1 材料成分 39 3.2.2 材料尺寸及切割 39 3.3 銲接試驗 42 3.3.1 試片銲接前準備 42 3.3.2 雷射銲接參數 42 3.3.3 TIG銲接 43 3.4 殘留應力量測 44 3.5 角變形量測 48 第四章 實驗結果與討論 50 4.1 TIG銲件參數 50 4.2 角變形分析 54 4.2.1 雷射銲件角變形 54 4.2.2 TIG銲件角變形 59 4.2 殘留應力分析 67 第五章 結論與建議 72 5.1 結論 72 5.2 建議 73 參考文獻 74   圖目錄 圖1.1 元素週期表 1 圖1.2 鈦與鈦合金之應用 3 圖1.3 鈦與鈦合金之應用 4 圖1.4 鈦合金應用於航太 5 圖1.5 全球鈦材料應用發展趨勢 5 圖2.1 添加不同合金元素對鈦合金性質影響 13 圖2.2 Ti-6Al-4V 表面所生成的氧化層 14 圖2.3 鈦的接合方法 15 圖2.4 TIG銲接示意圖 16 圖2.5 雷射銲接示意圖 17 圖2.6 不同能量之加工狀態 18 圖2.7 雷射銲接與TIG銲接溫度、銲道比較圖 19 圖2.8 Nd:YAG固態雷射腔體 20 圖2.9 Nd:YAG固態雷射與機械手臂 20 圖2.10 銲接變形之形式 23 圖2.11 殘留應力之分佈圖 24 圖2.12 銲接殘留應力形成之示意圖 25 圖2.13 銲接過程中溫度與殘留應力變化之示意圖 26 圖2.14 對接銲典型殘留應力之大小與分佈圖 27 圖2-15 鑽孔法與X-ray 繞射法量測銲後殘留應力 28 圖2-16 X-ray 繞射法量測銲後處理之殘留應力比較 28 圖2-17 鑽孔法與有限元素法量測及模擬銲後殘留應力 29 圖2-18 花型三軸應變計之排列設計圖 30 圖2-19 平面雙軸向應力狀態圖 30 圖2-20 a、b與D/D0之關係曲線圖 35 圖2-21 釋放之應變與鑽孔深度和應變規直徑比值(Z/D)之關係 36 圖3.1 實驗設計流程圖 38 圖3.2 EDS成份分析 39 圖3.3 母材大小 40 圖3.4 高壓水刀切割機(輝哲科技提供) 40 圖3.5 超高壓水刀切割機加工情形(一) 41 圖3.6 超高壓水刀切割機加工情形(二) 41 圖3.7 雷射銲接夾具夾持方式 42 圖3.8 TIG銲接夾具夾持方式 43 圖3.9 P-3500訊號指示器 45 圖3.10 SB-10 訊號閘道控制器 45 圖3.11 (a) RS-200 高速氣鑽 (b)光學定位系統 46 圖3.12 花型三軸應變規 47 圖3.13 殘留應力的量測位置 47 圖3.14 角變形之量測位置 48 圖3.15 角變形值之定義示意圖 49 圖3.16 角變形之量測座標 49 圖4.1 第2組試片之微硬度分佈圖 53 圖4.2 第4組試片之微硬度分佈圖 53 圖4.3 雷射銲件各點角變形 54 圖4.4 雷射銲件Y=10mm之角變形 55 圖4.5 雷射銲件Y=30mm之角變形 55 圖4.6 雷射銲件Y=50mm之角變形 56 圖4.7 雷射銲件Y=70mm之角變形 56 圖4.8 雷射銲件Y=90mm之角變形 57 圖4.9 雷射銲件Y=110mm之角變形 57 圖4.10 雷射銲件Y=130mm之角變形 58 圖4.11 雷射銲件之縱向變形 58 圖4.12 TIG銲件之角變形 59 圖4.13 TIG銲件Y=10mm之角變形 60 圖4.14 TIG銲件Y=30mm之角變形 60 圖4.15 TIG銲件Y=50mm之角變形 61 圖4.16 TIG銲件Y=70mm之角變形 61 圖4.17 TIG銲件Y=90mm之角變形 62 圖4.18 TIG銲件Y=110mm之角變形 62 圖4.19 TIG銲件Y=130mm之角變形 63 圖4.20 TIG銲件之縱向變形 63 圖4.21 TIG銲件以不同電流及走速銲接之平均角變形 64 圖4.22 TIG銲件以不同電流及走速銲接之縱向變形 64 圖4.23 雷射與TIG銲件之平均角變形 66 圖4.24 雷射與TIG銲件之縱向變形 66 圖4.25 雷射銲件之殘留應力分佈圖 69 圖4.26 TIG銲件之殘留應力分佈圖 69 圖4.27 雷射與TIG銲道及背面比較圖 70 圖4.28 雷射與TIG銲件之殘留應力分佈圖 70 圖4.29 TIG不同參數銲件之殘留應力分佈圖 71 表目錄 表1.1 地球元素含量 2 表1.2 鈦合金應用的範圍 6 表2.1 鈦及其他金屬的物理性質 10 表2.2 常見鈦合金的鋁當量、鉬當量與其分類 11 表2.3 鈦合金於汽車零件之應用領域及潛在使用量 14 表2.4 雷射銲接、電子銲接與TIG銲接特性 18 表3.1 Ti-6Al-4V鈦合金成份(wt%) 39 表4-1 TIG銲件不同參數能量比 50 表4-2 TIG銲件不同參數之銲道與背面比較表 51

    1. http://upload.wikimedia.org/wikipedia/zh/c/c3/Periodic-table.png
    2. http://www.daviddarling.info/encyclopedia/E/elterr.html
    3.侯貫智,金屬材料快報-鈦金屬,金屬中心產業資訊與企劃組,民國97年1月刊。
    4.邱衍智,Ti-6Al-4V 鈦合金之可加工性探討,國立高雄第一科技大學,機械與自動化工程系碩士論文,民國93年1月。
    5.臺灣鈦金屬協會。http://www.titan-taiwan.org.tw
    6.侯貫智,產業評析專欄-車用鈦合金未來發展方向,金屬中心產業資訊與企劃組,民國96年2月。
    7.The Japan carbon fiber manufactures association
    http://www.carbonfiber.gr.jp。
    8.侯貫智,產業評析專欄-從全球鈦合金熱潮下看我國產業發展機會,金屬 中心產業資訊與企劃組,民國96年10月。
    9.蔡幸甫,鈦及鈦合金工業之應用及現況,工業材料雜誌145期,頁68-70,民國88年1月。
    10.蘇明德,鈦的自述,科學發展426期,頁66-71,民國97年6月。
    11.黃錦鐘,鈦及鈦合金的焊接[1]-鈦的製法與鈦的性質,機械技術雜誌,頁202-209, 民國86年8月。
    12. R. Boyer, E. W. Collings and G. Welsch, Materials Properties Handbook: Titanium Alloys, ASM International, 1994.
    13. W. F. Smith, Structure and Properties of Engineering Alloys, Mc Graw-Hill Inc., pp. 433-486, 1993.
    14.曾光宏,銲接缺陷之形成原因與防範對策簡介(I),機械技術雜誌,民國88年7月。
    15. F. H. Froes, Non-Aerospace Applications of Titanium, Titanium and Titanium Alloys: Fundamentals and Applicatio, pp. 393-422, 1998.
    16.凌毓彥,氧原子擴散行為對Ti-6Al-4V 表面α-case 生成之研究,國立成功大學機械系碩士論文,民國90年6月。
    17.高道鋼,鈦銲接技術,全華科技圖書股份有限公司,民國90年1月
    18.S.W. Banovic, J.N. Dupont, and A.R. Marder, Dilution Control in Gas - Tungsten-Arc Welds Involving Super austenitic Stainless Steels and Nickel-Based Alloys, Metallurgical and Materials Transactions B, pp. 1171-1176, Vol. 32B, December 2001.
    19. New Lessons in Arc Welding, The Lincoln Electric Company, p.8, 4th, 1992.
    20. H. B. Cary, Modern Welding Technology, 4th, Prentice-Hall, pp. 70-85, 1998.
    21.王振欽,銲接學,高立圖書公司,頁14-19,民國86年。
    22. C.O. Brown and C.M. Banas, AWS Annual Mtg., San Francisco, April 1971.
    23. G. A. Moraitis and G. N. Labeas, Residual Stress and Distortion Calculation of Laser Beam Welding for Aluminum Lap Joints, Journal of Materials Processing Technology, Vol. 198, pp. 260-269, 2008.
    24. W. M. Steen, Laser Material Processing, Springer-Verlag, London, pp. 53-177, 1991.
    25. X. D. He, Numeriacl Simulation of TheResidual Stress in Laser Beam Welded and TIG Welded Joints of Titanium Alloy, Xi'an jiaotong University, July 2007.
    26. N. F. Gittos and M. H. Scott, Heat Affected Zone Cracking of Al-Mg-Si Alloys, Welding Journal, pp. 95-103, 1981.
    27. K. Tsujimoto, A. Sakaguchi, T. Kinoshita, K. Tanaka and S. Sasabe, HAZ Cracking of Al-Mg-Si Alloys, Welding Journal, pp. 1-13, 1983.
    28. V. J. Papazoglou and K. Masubuchi, Analysis and Control of Distortion in Welded Aluminum Structures, Welding Journal, pp. 251-262, 1978.
    29. C. L. Cline, Weld Shrinkage and Control of Distortion in Aluminum Bictt Welds, Welding Journal, p.48, 1965.
    30. L. P. Connor. Welding Science and Technology Welding Handbook, Vol. 1, 7th , 1982.
    31. L. P. Connor .Welding Technology, Welding Handbook: Eight Edition, AWS, Vol. 1, 1987.
    32. R. H. Leggatt and J. D. White, in Proc. Conf., Residual Stress in Welded Construction and Their Effects, The Welding Institute, pp. 119-132, November 1977.
    33.曾光宏,不銹鋼銲件變形與殘留應力之研究,國立交通大學機械工程研究所博士論文,民國90年。
    34. C. P. Chou and Y. C. Lin, Improvement of Residual Stress by Parallel Heat Welding in Small Specimens in Type 304 Stainless Steel, Materials Science and Technology, Vol. 8. No. 2, pp. 179-183, 1992.
    35. Y. C. Lin and C. P. Chou, A Study of The Residual Stress Due to Parallel Heat Welding in Small Specimens of Type 304 Stainless Steel, Materials Science and Technology, Vol. 8. No. 9, pp. 837-840, 1992.
    36. Y. C. Lin and C. P. Chou, A New Technique for Reducing the Residual Stress Induced by Welding in Type 304 Stainless Steel, Journal of Material Processing Technology, Vol. 48, pp. 693-698, 1995.
    37. S. Kou, Welding Metallurgy, John Wiley and Sons, New York, 1987.
    38. E. Macherauch and H. Wohlfahrt, Residual Stresses in Welded Construction and Their Effects, The Welding Institute, pp. 267-282, November 1977.
    39.楊烱弘,X-ray 繞射法及鑽孔法量測並比較消除前後的銲後殘留應力,義守大學材料科學與工程學系碩士論文,民國92年。
    40.黃禮伸,平板對接銲之殘留應力分析與實測,國立成功大學造船暨船舶機械工程研究所碩士論文,民國91年。
    41.鄭慶民,熱處理型鋁合金銲接性之研究,國立交通大學機械工程研究所博士論文,民國94年。
    42. N. J. Rendler and I. Vigness, Hole-drilling Strain-gage Method of Measuring Residual Stress, Proc., SESA XXⅢ, No. 2, pp. 577-586,
    December 1966.
    43. Measurement of Residual Stress by the Hole-Drilling Strain Gage Method, TN-503- 6, Vishay Micro-Measurements, 2007.
    44. G. S. Schajer, Application of Finite Element Calculations to Residual Stress Measurements , Journal of Engineering Materials and Technology, pp. 157-163, April 1981.

    無法下載圖示 本全文未授權公開
    QR CODE