研究生: |
游小嬋 You, Siao-Chan |
---|---|
論文名稱: |
微粒體甲烷單氧化酵素之結構與功能性之模型三核銅金屬簇化物之研究(IV) Structrual and Functional Models for the Trinuclear Copper Clusters of the Particulate Methane Monooxygenase (IV) |
指導教授: |
陳炳宇
Chen, Ping-Yu 李位仁 Lee, Way-Zen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 微粒體甲烷單氧化酵素 、三核銅金屬簇化物 、催化 |
英文關鍵詞: | Particulate Methane Monooxygenase, Trinuclear Copper Clusters, catalysis |
論文種類: | 學術論文 |
相關次數: | 點閱:186 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在先前的研究中,我們已經發展出配位基7-Dipy能與三當量的[CuI(CH3CN)4](BF4)配位形成三核銅金屬簇離子化合物[CuICuICuI(7-Dipy)](BF4) (1)。且室溫、常壓下,此三核銅簇化物[CuICuICuI(7-Dipy)](BF4) (1) 加入雙氧水可以有效催化氧化環己烷 (C6H12) 的碳氫鍵 (C-H鍵能為99.3 kcal/mol) 生成環己醇 (C6H12O) 和環己酮 (C6H10O)。而三核銅簇化物[CuICuICuI(7-Dipy)](BF4) (1) 通入氧氣或兩當量的雙氧水可得穩定的三核銅金屬含氧簇離子化合物[CuIICuII(µ-O)CuII(7-Dipy)](BF4)2 (2)。
在我的研究中,藉由另外的實驗方法得到的400 MHz 1H-NMR 和ESI-MS光譜,再次證實7-Dipy加入三當量的[CuI(CH3CN)4](BF4)確實會生成三核銅簇化物[CuICuICuI(7-Dipy)](BF4) (1)。此外,在相同的催化條件下,我們發現單銅金屬離子化合物[CuI(CH3CN)4](BF4) (7)、[CuI(bispicolylamine)](BF4) (8)相較三核銅金屬簇離子化合物[CuICuICuI(7-Dipy)](BF4) (1) 對於環己烷的催化反應活性並不高。而對催化反應的時間追蹤做研究,發現三核銅簇化物[CuICuICuI(7-Dipy)](BF4) (1) 在反應45分鐘時H2O2會被耗盡。
為了更進一步了解三核銅簇化物在進行催化反應時,是屬於自由基反應還是經由單氧直接嵌入的一步反應機構,因此我們設計一系列的實驗,利用對自由基相當靈敏的DMPO去檢測三核銅簇化物[CuICuICuI(7-Dipy)](BF4) (1) 在加入雙氧水進行催化反應時,是否有自由基反應的參與。EPR光譜圖顯示,可以排除三核銅簇化物[CuICuICuI(7-Dipy)](BF4) (1) 加入雙氧水進行催化反應時是屬於自由基反應機構。
關鍵字:微粒體甲烷單氧化酵素、三核銅金屬簇化物、催化
In previous study, a ligand 7-Dipy has been synthesized, and it can coordinate with tree equivalents of [CuI(CH3CN)4](BF4) to form a trinuclear copper complex [CuICuICuI(7-Dipy)](BF4) (1). This trinuclear copper complex [CuICuICuI(7-Dipy)](BF4) (1) catalyst is able to oxidize the C-H bonds of cyclohexane (C-H BDE = 99.3 kcal/mol) to cyclohexanol and cyclohexanone with high turnover frequencies in the presence of H2O2 in acetonitrile under ambient conditions. The oxygenation of [CuICuICuI(7-Dipy)](BF4) (1) either by dioxygen or two equivalents of H2O2 will obtain a stable [CuIICuII(µ-O)CuII(7-Dipy)](BF4)2 (2).
In my study, 400 MHz 1H-NMR and ESI-MS spectra demonstrate that the 7-Dipy add tree equivalents of [CuI(CH3CN)4](BF4) will obtain [CuICuICuI(7-Dipy)](BF4) (1) complex. In the same catalytic conditions, we found that mononuclear copper complexes [CuI(CH3CN)4](BF4) (7) and [CuI(bispicolylamine)](BF4) (8) compared to trinuclear copper complex [CuICuICuI(7-Dipy)](BF4) (1) a significantly lower level of cyclohexane is oxidized. A time-course study indicates that the H2O2 used to turn over the trinuclear copper complex [CuICuICuI(7-Dipy)](BF4) (1) catalyst for substrate oxidation is already exhausted within 45 min.
To further understand the trinuclear copper complex [CuICuICuI(7-Dipy)](BF4) (1) carrying out catalytic reaction are free radical mechanism or direct oxene insertion mechanism, therefore, we designed a series of experiments using very sensitive to free radicals DMPO, to detect the trinuclear copper complex [CuICuICuI(7-Dipy)](BF4) (1) by adding H2O2 for the catalytic reaction whether involvement free radical mechanism. EPR spectra demonstrate that trinuclear copper complex [CuICuICuI(7-Dipy)](BF4) (1) catalytic reaction can rule out the involvement of free radical mechanism.
Key Word:Particulate Methane Monooxygenase、Trinuclear Copper Clusters、Catalysis
1. Olah; George, A. Beyond oil and gas: The methanoleconomy;
Wiley-VCH: Weinheim, ALLEMAGNE, 2005, 44.
2. Periana, R. A.; Bhalla, G.; Tenn, W. J.; Young, K. J. H.; Liu, X. Y.; Mironov, O.; Jones, C. J.; Ziatdinov, V. R., Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the CH activation reaction. J. Mol. Catal. A-Chem. 2004, 220 (1), 7-25.
3. Shindell, D. T.; Faluvegi, G.; Koch, D. M.; Schmidt, G. A.; Unger, N.; Bauer, S. E., Improved Attribution of Climate Forcing to Emissions. Science 2009, 326 (5953), 716-718.
4. Rosenzweig, A. C.; Frederick, C. A.; Lippard, S. J.; Nordlund, P. Nature 1993, 366, 537.
5. Lipscomb, J. D. Annu. Rev. Microbiol. 1994, 48, 371.
6. Choi, D. W.; Kunz, R. C.; Boyd, E. S.; Semrau, J. D.; Antholine, W. E.; Han, J. I.; Zahn, J. A.; Boyd, J. M.; de la Mora, A. M.; DiSpirito, A. A. J. Bacteriol. 2003, 185, 5755
.
7. Chan, S. I.; Yu, S. S. F. Accounts Chem. Res. 2008, 41, 969.
8. Chan, S. I.; Wang, V. C. C.; Lai, J. C. H.; Yu, S. S. F.; Chen, P. P. Y.; Chen, K. H. C.; Chen, C. L.; Chan, M. K. Angew. Chem.-Int. Edit. 2007, 46, 1992.
9.Lieberman, R. L.; Rosenzweig, A. C., Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 2005, 434 (7030), 177-182.
10. Yu, S. S. F.; Chen, K. H. C.; Tseng, M. Y. H.; Wang, Y. S.; Tseng, C. F.; Chen, Y. J.; Huang, D. S.; Chan, S. I., Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 2003, 185 (20), 5915-5924.
11. Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J., Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 2004, 43 (15), 4421-4430.
12. Nguyen, H. H. T.; Nakagawa, K. H., X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications. Journal of the American Chemical Society. 1996, 118 (50), 12766-12776.
13. Chen, P. P. Y.; Chan, S. I., Theoretical modeling of the
hydroxylation of methane as mediated by the particulate methane
monooxygenase. J. Inorg. Biochem. 2006, 100 (4), 801-809.
14. Cole, A. P.; Root, D. E.; Mukherjee, P.; Solomon, E. I.; Stack, T. D. P. Science 1996, 273, 1848.
15. Machonkin, T. E.; Mukherjee, P.; Henson, M. J.; Stack, T. D. P.; Solomon, E. I. Inorg. Chim. Acta. 2002, 341, 39.
16. Root, D. E.; Henson, M. J.; Machonkin, T.; Mukherjee, P.; Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 4982.
17. Peter, P. -Y. Chen; Richard B. –G. Yang, Jason C. –M. Lee and Sunney I. Chan. Proc Natl Acad Sci U S A 2007, 104: 14570-14575.
18. Szwarc, M. Proc. R. Soc. Lond., A 1951, 207, 5.
19. Wilkinson, B.; Zhu, M.; Priestley, N. D.; Nguyen, H. H. T.; Morimoto, H.; Williams, P. G.; Chan, S. I.; Floss, H. G., A concerted mechanism for ethane hydroxylation by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 1996, 118 (4), 921-922.
20. Valentine, A. M.; Wilkinson, B.; Liu, K. E.; KomarPanicucci, S.; Priestley, N. D.; Williams, P. G.; Morimoto, H.; Floss, H. G.; Lippard, S. J., Tritiated chiral alkanes as substrates for soluble methane monooxygenase from Methylococcus capsulatus (Bath): Probes for the mechanism of hydroxylation. J. Am. Chem. Soc. 1997, 119 (8), 1818-1827.
21. Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H. H. T.; Yip, J. H. K.; Chan, S. I., Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 1997, 119 (42), 9949-9955.
22. Huang, D. S.; Wu, S. H.; Wang, Y. S.; Yu, S. S. F.; Chan, S. I., Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis. ChemBioChem 2002, 3 (8), 760-765.
23.Yoshizawa, K., Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase. J. Inorg. Biochem. 2000, 78 (1), 23-34.
24.Whyman, R., Applied Organometallic Chemistry and Catalysis. Oxford University Press, Oxford: 2001.
25. Shilov, A. E.; Shul'pin, G. B., Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.
26. Catalytic Activation and Functionalisation of Light Alkanes. In NATO ASI series, E. D. Derouane, J. Haber, F. Lemos, F. Ramoanes ed.; Kluwer Academic Publ.: Dordrecht, The Netherlands, 1998.
27. The Activation of Dioxygen and Homogeneous Catalytic Oxidation.
D. Barton, A. E. Martell, D. T. Sawyer ed.; Plenum Press: New York,
1993.
28. Shilov, A. E.; Shul'pin, G. B., Chem. Rev. 1997, 97, 2879.
29. Schuchardt, U.; Cardoso, D.; Sercheli, R.; Pereira, R.; de Cruz, R.
S.; Guerreiro, M. C.; Mandelli, D.; Spinace, E. V.; Fires, E. L.,
Cyclohexane oxidation continues to be a challenge. Appl. Catal. A-Gen.
2001, 211 (1), 1-17.
30.Bregeault, J. M., Transition-metal complexes for liquid-phase
catalytic oxidation: some aspects of industrial reactions and of emerging
technologies. Dalton Trans. 2003, (17), 3289-3302.
31. Shul'pin, G. B., Metal-catalyzed hydrocarbon oxygenations in
solutions: The dramatic role of additives: a review. J. Mol. Catal.
A-Chem. 2002, 189 (1), 39-66.
32. Shul'pin, G. B.; Nizova, G. V.; Kozlov, Y. N.; Pechenkina, I. G.,
Oxidations by the hydrogen peroxide manganese(IV) complex
carboxylic acid system. Part 4. Efficient acid-base switching between
catalase and oxygenase activities of a dinuclear manganese(IV) complex
in the reaction with H2O2 and an alkane. New J. Chem. 2002, 26 (9),
1238-1245.
33. Schuchardt, U.; Carvalho, W. A.; Spinace, E. V., Why is it
interesting to study cyclohexane oxidation. Synlett 1993, (10),
713-718.
34. Gamez, P.; Aubel, P. G.; Driessen, W. L.; Reedijk, J.,
Homogeneous bio-inspired copper-catalyzed oxidation reactions. Chem.
Soc. Rev. 2001, 30 (6), 376-385.
35. Karlin, K. D.; Zuberbuhler, A. D., Bioinorganic Catalysis. 2nd ed.;
J., R.; E., B., Eds. Dekker, New York, 1999; pp 469534.
36. Mimmi, M. C.; Gullotti, M.; Santagostini, L.; Battaini, G.; Monzani,
E.; Pagliarin, R.; Zoppellaro, G.; Casella, L., Models for biological
trinuclear copper clusters. Characterization and enantioselective
catalytic oxidation of catechols by the copper(II) complexes of a chiral
ligand derived from (S)-(-)-1,1 '-binaphthyl-2,2 '-diamine. Dalton Trans.
2004, (14), 2192-2201.
37. Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P., Structure and
spectroscopy of copper-dioxygen complexes. Chem. Rev. 2004, 104 (2),
1013-1045.
38. Lee, D. H., Comprehensive Coordination Chemistry. 2nd ed.;
Elsevier: 2003; Vol. 8, Ch. 8.17, p 437457.
39. Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P., Structure and
spectroscopy of copper-dioxygen complexes. Chem. Rev. 2004, 104 (2),
1013-1045.
40. Itoh, S., Comprehensive Coordination Chemistry. 2nd ed.;
McCleverty, J. A.; Meyer, T. J., Eds. Elsevier: 2003; Vol. 8, Ch. 8.15,
pp 369393.
41. Silva, J. J. R. F. d.; Williams, R. J. P., The Biological Chemistry of
the Elements. Oxford University Press, Oxford: 2001.
42. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E., Multicopper
oxidases and oxygenases. Chem. Rev. 1996, 96 (7), 2563-2605.
43. Klinman, J. P., Mechanisms whereby mononuclear copper proteins
functionalize organic substrates. Chem. Rev. 1996, 96 (7), 2541-2561.
44. Ayala, M.; Torres, E., Enzymatic activation of alkanes: constraints
and prospective. Appl. Catal. A-Gen. 2004, 272 (1-2), 1-13.
45. Knapp, S.; Trope, A. F.; Theodore, M. S.; Hirata, N.; Barchi, J. J.,
Ring expansion of ketones to 1,2-keto thioketals. Control of bond
migration. J. Org. Chem. 1984, 49 (4), 608-614.
46. Sobkowiak, A.; Qui, A.; Liu, X.; Llobet, A.; Sawyer, D. T.,
Copper(I)/(t-BuOOH)-Induced activation of dioxygen for the
ketonization of methylenic carbons. J. Am. Chem. Soc. 1993, 115 (2),
609-614.
47. 簡佑芩,國立台灣師範大學化學研究所碩士論文,2010
48. 姜博仁,國立台灣師範大學化學研究所碩士論文,2011
49. 藍國峻,國立台灣師範大學化學研究所碩士論文,2011