研究生: |
鄭幃銜 Teh, Wei-Xuan |
---|---|
論文名稱: |
(壹)探討小分子結構與加速胰島類澱粉蛋白聚集功能 (貳)探討乙醯化反應對αA-水晶體蛋白片段(66-80)聚集的影響 (I) Exploring the structure of small molecules to accelerate human islet amyloid polypeptide aggregation (II) Exploring the effect of acetylation on the aggregation of αA-crystallin 66-80 |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 胰島類澱粉蛋白 、胡椒鹼衍生物 、加速聚集 、水晶體蛋白 、αA水晶體蛋白片段66-80 、白內障 、乙醯化 |
英文關鍵詞: | Islet amyloid polypeptide, piperine derivatives, accelerate aggregation, Crystallin, αA66-80, cataract, acetylation |
DOI URL: | http://doi.org/10.6345/NTNU201900832 |
論文種類: | 學術論文 |
相關次數: | 點閱:204 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分成兩個部分,摘要如下:
第一部分旨在開發尋找可以加速類澱粉蛋白聚集的小分子。在本研究中,我們發現胡椒鹼的衍生物有加速聚胰島類澱粉蛋白聚集的效果。我們利用硫磺素-T動力學實驗對7個胡椒鹼衍生物包含胡椒鹼進行初步的篩檢發現具有胡椒鹼上的苯環以及羧酸這樣的結構都有加速胰島類澱粉蛋白聚集的效果。此外,連接苯環以及羧酸的長度也會影響加速聚集的效果。我們也透過變異胰島類澱粉蛋白上特定位置的胺基酸發現,羧酸會與1號位的賴胺酸以及11號位的精胺酸有靜電作用力而使這類的結構能加速胰島類澱粉蛋白的聚集。
第二部分旨在探討轉譯後修飾對類澱粉蛋白的聚集是否有影響。在本研究中我們探討了乙醯化反應,其中一種轉譯後修飾,對αA水晶體蛋白片段66-80聚集形成類澱粉蛋白纖維是否有影響。我們利用硫磺素-T動力學實驗發現乙醯化後的αA水晶體蛋白片段66-80不會聚集形成類澱粉蛋白纖維。透過穿透式電子顯微鏡的觀察,我們也沒有觀察到乙醯化後的αA水晶體蛋白片段66-80形成典型的類澱粉蛋白纖維。
The dissertation is devided into two section, they are as follows:
I.Nowaday, scientist turns their focuses on developing small organic compounds that can promote amyloid fibril formation in order to reduce the time in the oligomer state, this process might reduce toxicity that induces by amyloid protein.Here, we found that piperine derivative can induce IAPP aggregation. In this research, we used thioflavin-T kinetic assay to conduct a preliminary screening of 7 piperine derivatives that contain piperine. We found that the structure of benzene and carboxylic acid on piperine can accelerate the formation of IAPP aggregates. We also mutant specific position of IAPP and found that the carboxylic acid might have electrostatic interaction with lysine 1 and arginine 11, thus both structures might allow accelerating the aggregation of IAPP.
II.In the second work, we investigate the effect of acetylation, one of post-translational modification, to αA66-80 forming amyloid fibrils. In our thioflavin-T kinetic studies, we found that acetylated αA66-80 peptide loss the ability to form amyloid fibrils. Using transmission electron microscopy, we did not observe acetylated αA66-80 form typical amyloid fibrils.
[1]Kyle, R. A., Amyloidosis: a convoluted story. Br. J. Haematol. 2001, 114 , 529-538.
[2]Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333-366.
[3]Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S.-i.; Merlini, G.; Saraiva, M. J.; Westermark, P., Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2012, 19 , 167-170.
[4]Hashimoto, M.; Rockenstein, E.; Crews, L.; Masliah, E., Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromolecular Med. 2003, 4, 21-36.
[5]Martin, L.; Latypova, X.; Terro, F., Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem. Int. 2011, 58, 458-71.
[6]Winner, B.; Jappelli, R.; Maji, S. K.; Desplats, P. A.; Boyer, L.; Aigner, S.; Hetzer, C.; Loher, T.; Vilar, M.; Campioni, S.; Tzitzilonis, C.; Soragni, A.; Jessberger, S.; Mira, H.; Consiglio, A.; Pham, E.; Masliah, E.; Gage, F. H.; Riek, R., In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 4194-9.
[7]Westermark, P.; Wernstedt, C.; Wilander, E.; Hayden, D. W.; O'Brien, T. D.; Johnson, K. H., Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. U.S.A. 1987, 84 , 3881-3885.
[8]Kannan, R.; Santhoshkumar, P.; Mooney, B. P.; Sharma, K. K., The alphaA66-80 peptide interacts with soluble alpha-crystallin and induces its aggregation and precipitation: a contribution to age-related cataract formation. Biochemistry 2013, 52, 3638-50.
[9]Tyedmers, J.; Mogk, A.; Bukau, B., Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 2010, 11, 777.
[10]Stromer, T.; Serpell, L. C., Structure and morphology of the Alzheimer's amyloid fibril.
Microsc. Res. Tech. 2005, 67, 210-217.
[11]Xi, W.-H.; Wei, G.-H., Amyloid-β peptide aggregation and the influence of carbon nanoparticles. Chin. Phys. B 2015, 25, 018704.
[12]Luca, S.; Yau, W.-M.; Leapman, R.; Tycko, R., Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 2007, 46, 13505-13522.
[13]Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R., A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 , 16742-16747.
[14]Nguyen, H. D.; Hall, C. K., Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16180-16185.
[15]Sugita, Y.; Okamoto, Y., Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999, 314 , 141-151.
[16]Xue, W.-F.; Homans, S. W.; Radford, S. E., Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8926-8931.
[17]Bruggink, K. A.; Müller, M.; Kuiperij, H. B.; Verbeek, M. M., Methods for analysis of amyloid-β aggregates. J. Alzheimer's Dis. 2012, 28, 735-758.
[18]Kumar, S.; Walter, J., Phosphorylation of amyloid beta (Aβ) peptides–A trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany N.Y.) 2011, 3, 803.
[19]Pryor, N. E.; Moss, M. A.; Hestekin, C. N., Unraveling the early events of amyloid-β protein (Aβ) aggregation: techniques for the determination of Aβ aggregate size. Int. J. Mol. Sci. 2012, 13, 3038-3072.
[20]Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y., Regioselective Formation of Multiple Disulfide Bonds with the Aid of Postsynthetic S-Tritylation. Org. Lett. 2015, 17, 2202-2205.
[21]Freire, S.; de Araujo, M. H.; Al-Soufi, W.; Novo, M., Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dyes Pigm. 2014, 110, 97-105.
[22]Smith, P. K.; Krohn, R. I.; Hermanson, G.; Mallia, A.; Gartner, F.; Provenzano, M.; Fujimoto, E.; Goeke, N.; Olson, B.; Klenk, D., Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76-85.
[23]Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804, 1405-1412.
[24]Melmed, S.; Polonsky, K. S.; Larsen, P. R.; Kronenberg, H. M., Williams Textbook of Endocrinology E-Book. Elsevier Health Sciences: 2011.
[25] Westermark, P., Quantitative studies of amyloid in the islets of Langerhans. Upsala J. Med. Sci. 1972, 77, 91-94.
[26]Maloy, A. L.; Longnecker, D. S.; Greenberg, E. R., The relation of islet amyloid to the clinical type of diabetes. Hum. Pathol. 1981, 12, 917-922.
[27]Cooper, G.; Willis, A.; Clark, A.; Turner, R.; Sim, R.; Reid, K., Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. U.S.A 1987, 84, 8628-8632.
[28]Mosselman, S.; Höppener, J.; Zandberg, J.; Van Mansfeld, A.; Van Kessel, A. G.; Lips, C.; Jansz, H., Islet amyloid polypeptide: identification and chromosomal localization of the human gene. FEBS Lett.1988, 239, 227-232.
[29]Cao, P.; Marek, P.; Noor, H.; Patsalo, V.; Tu, L. H.; Wang, H.; Abedini, A.; Raleigh, D. P., Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett. 2013, 587, 1106-18.
[30]Wang, J.; Xu, J.; Finnerty, J.; Furuta, M.; Steiner, D. F.; Verchere, C. B., The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. Diabetes 2001, 50, 534-9.
[31]Marzban, L.; Trigo-Gonzalez, G.; Zhu, X.; Rhodes, C. J.; Halban, P. A.; Steiner, D. F.; Verchere, C. B., Role of beta-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide. Diabetes 2004, 53, 141-8.
[32]Marzban, L.; Soukhatcheva, G.; Verchere, C. B., Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in beta-cells. Endocrinology 2005, 146, 1808-17.
[33]Abedini, A.; Schmidt, A. M., Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett.2013, 587, 1119-1127.
[34]Marzban, L.; Park, K.; Verchere, C. B., Islet amyloid polypeptide and type 2 diabetes. Exp. Gerontol.2003, 38, 347-351.
[35]Mukherjee, A.; Morales-Scheihing, D.; Butler, P. C.; Soto, C., Type 2 diabetes as a protein misfolding disease. Trends Mol. Med.2015, 21, 439-449.
[36]Young, D.; Deems, R.; Deacon, R.; McIntosh, R.; Foley, J., Effects of amylin on glucose metabolism and glycogenolysis in vivo and in vitro. Am. J. Physiol. Endocrinol. Metab.1990, 259, E457.
[37]Westermark, P.; Andersson, A.; Westermark, G. T., Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 2011, 91, 795-826.
[38]Scherbaum, W., The role of amylin in the physiology of glycemic control. Exp. Clin. Endocr. Diab. 1998, 106, 97-102.
[39]Höppener, J. W.; Ahrén, B.; Lips, C. J., Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med. 2000, 343, 411-419.
[40]Zraika, S.; Hull, R.; Verchere, C.; Clark, A.; Potter, K.; Fraser, P.; Raleigh, D.; Kahn, S., Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 2010, 53, 1046-1056.
[41]Weise, K.; Radovan, D.; Gohlke, A.; Opitz, N.; Winter, R., Interaction of hIAPP with Model Raft Membranes and Pancreatic β‐Cells: Cytotoxicity of hIAPP Oligomers. ChemBioChem 2010, 11, 1280-1290.
[42]Janson, J.; Ashley, R. H.; Harrison, D.; McIntyre, S.; Butler, P. C., The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 1999, 48, 491-498.
[43]Zraika, S.; Hull, R.; Udayasankar, J.; Aston-Mourney, K.; Subramanian, S.; Kisilevsky, R.; Szarek, W.; Kahn, S., Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis. Diabetologia 2009, 52, 626-635.
[44]Ma, L.; Li, X.; Wang, Y.; Zheng, W.; Chen, T., Cu (II) inhibits hIAPP fibrillation and promotes hIAPP-induced beta cell apoptosis through induction of ROS-mediated mitochondrial dysfunction. J. Inorg. Biochem.2014, 140, 143-152.
[45]Khemtémourian, L.; Antoinette Killian, J.; Höppener, J. W.; Engel, M. F., Recent Insights in Islet Amyloid Polypeptide-Induced Membrane Disruption and Its Role in Exp. Diabetes Res.2008, 2008.
[46]Marzban, L.; Soukhatcheva, G.; Verchere, C. B., Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in β-cells. Endocr. J. 2005, 146, 1808-1817.
[47]Scherzer-Attali, R.; Farfara, D.; Cooper, I.; Levin, A.; Ben-Romano, T.; Trudler, D.; Vientrov, M.; Shaltiel-Karyo, R.; Shalev, D.; Segev-Amzaleg, N., Naphthoquinone-tyrptophan reduces neurotoxic Aβ* 56 levels and improves cognition in Alzheimer's disease animal model. Neurobiol. Dis.2012, 46, 663-672.
[48]Gazit, E., A possible role for π-stacking in the self-assembly of amyloid fibrils. The FASEB Journal 2002, 16, 77-83.
[49]Porat, Y.; Abramowitz, A.; Gazit, E., Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des.2006, 67, 27-37.
[50]Tu, L.-H.; Young, L. M.; Wong, A. G.; Ashcroft, A. E.; Radford, S. E.; Raleigh, D. P., Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: critical evaluation of the importance of aromatic–inhibitor and histidine–inhibitor interactions. Biochemistry 2015, 54, 666-676.
[51]Azzam, S. K.; Jang, H.; Choi, M. C.; Alsafar, H.; Lukman, S.; Lee, S., Inhibition of human amylin aggregation and cellular toxicity by lipoic acid and ascorbic acid. Mol. Pharm. 2018, 15, 2098-2106.
[52]Mao, Y.; Yu, L.; Yang, R.; Ma, C.; Qu, L.; Harrington, P. d. B., New peptide inhibitors modulate the self-assembly of islet amyloid polypeptide residues 11–20 in vitro. Eur. J. Pharmacol. 2017, 804, 102-110.
[53]Meng, F.; Abedini, A.; Plesner, A.; Verchere, C. B.; Raleigh, D. P., The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry 2010, 49, 8127-8133.
[54]Ren, B.; Liu, Y.; Zhang, Y.; Cai, Y.; Gong, X.; Chang, Y.; Xu, L.; Zheng, J., Genistein: A Dual Inhibitor of Both Amyloid beta and Human Islet Amylin Peptides. ACS Chem. Neurosci. 2018, 9, 1215-1224.
[55]Bieschke, J.; Herbst, M.; Wiglenda, T.; Friedrich, R. P.; Boeddrich, A.; Schiele, F.; Kleckers, D.; del Amo, J. M. L.; Grüning, B. A.; Wang, Q., Small-molecule conversion of toxic oligomers to nontoxic β-sheet–rich amyloid fibrils. Nat. Chem. Biol. 2012, 8, 93-101.
[56]Singh, P. K.; Kotia, V.; Ghosh, D.; Mohite, G. M.; Kumar, A.; Maji, S. K., Curcumin modulates alpha-synuclein aggregation and toxicity. ACS Chem. Neurosci. 2013, 4, 393-407.
[57]Noor, H. Small Molecule Modulators of Amyloid Formation by Islet Amyloid Polypeptide. The Graduate School, Stony Brook University: Stony Brook, NY., 2012.
[58] Abedini, A.; Raleigh, D. P., A role for helical intermediates in amyloid formation by natively unfolded polypeptides? Phys. Biol.2009, 6, 015005.
[59]Abedini, A.; Raleigh, D. P., A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. Protein Eng. Des. Sel. 2009, 22, 453-459.
[60]Hassanpour, A.; De Carufel, C. A.; Bourgault, S.; Forgione, P., Synthesis of 2,5‐Diaryl‐Substituted Thiophenes as Helical Mimetics: Towards the Modulation of Islet Amyloid Polypeptide (IAPP) Amyloid Fibril Formation and Cytotoxicity. Chem.: Eur. J.2014, 20, 2522-2528.
[61]Kharbanda, C.; Alam, M. S.; Hamid, H.; Javed, K.; Bano, S.; Ali, Y.; Dhulap, A.; Alam, P.; Pasha, M. Q., Novel Piperine Derivatives with Antidiabetic Effect as PPAR‐γ Agonists. Chem. Biol. Drug Des.2016, 88, 354-362.
[62]Chen, Y. Amyloid Accelerators: Small Molecules that Accelerate Amyloid Formation by Amylin. The Graduate School, Stony Brook University: Stony Brook, NY., 2015.
[63]Santhoshkumar, P.; Raju, M.; Sharma, K. K., αA-crystallin peptide 66SDRDKFVIFLDVKHF80 accumulating in aging lens impairs the function of α-crystallin and induces lens protein aggregation. PloS One 2011, 6, e19291.
[64]Harding, J., Biochemistry epidemiology and pharmacology. Cataract 1991, 195-217.
[65]Jaenicke, R., Eye-Lens proteins structure, superstructure, stability, genetics. Naturwissenschaften 1994, 81, 423-429.
[66]Groenen, P. J.; Merck, K. B.; De Jong, W. W.; Bloemendal, H., Structure and modifications of the junior chaperone α‐crystallin: From lens transparency to molecular pathology. Eur. J. Biochem1994, 225, 1-19.
[67]Waley, S., Structural studies of α-crystallin. Biochem. J.1965, 96, 722.
[68]Thomson, J. A.; Augusteyn, R. C., On the structure of α-crystallin: construction of hybrid molecules and homopolymers. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1989, 994, 246-252.
[69]Horwitz, J., Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U.S.A 1992, 89, 10449-10453.
[70]Berman, E., Biochemistry of the eye. 1991. New York: plenum press.
[71]Lampi, K. J.; Ma, Z.; Shih, M.; Shearer, T. R.; Smith, J. B.; Smith, D. L.; David, L. L., Sequence analysis of βA3, βB3, and βA4 crystallins completes the identification of the major proteins in young human lens. J. Biol. Chem.1997, 272, 2268-2275.
[72]Santhoshkumar, P.; Udupa, P.; Murugesan, R.; Sharma, K. K., Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation. J. Biol. Chem.2008, 283, 8477-8485.
[73]Srivastava, O. P., Age-related increase in concentration and aggregation of degraded polypeptides in human lenses. Exp. Eye Res.1988, 47, 525-543.
[74]Su, S.-P.; McArthur, J. D.; Aquilina, J. A., Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach. Exp. Eye Res.2010, 91, 97-103.
[75]Lund, A. L.; Smith, J. B.; SMITH, D. L., Modifications of the water-insoluble human lens α-crystallins. Exp. Eye Res.1996, 63, 661-672.
[76]Harrington, V.; Srivastava, O.; Kirk, M., Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Mol. Vis. 2007, 13, 1680-1694.
[77]Hoehenwarter, W.; Klose, J.; Jungblut, P. R., Eye lens proteomics. Amino acids 2006, 30, 369-389.
[78]Srivastava, O. P.; Kirk, M. C.; Srivastava, K., Characterization of covalent multimers of crystallins in aging human lenses. J. Biol. Chem.2004, 279, 10901-10909.
[79]Roy, D.; Spector, A., Absence of low-molecular-weight alpha crystallin in nuclear region of old human lenses. Proc. Natl. Acad. Sci. U.S.A 1976, 73, 3484-3487.
[80]McFall-Ngai, M.; Ding, L.-L.; Takemoto, L.; Horwitz, J., Spatial and temporal mapping of the age-related changes in human lens crystallins. Exp. Eye Res.1985, 41, 745-758.
[81]Heys, K. R.; Friedrich, M. G.; Truscott, R. J., Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, α‐crystallin, in maintaining lens flexibility. Aging cell 2007, 6, 807-815.
[82]Harrington, V.; McCall, S.; Huynh, S.; Srivastava, K.; Srivastava, O. P., Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Mol. Vis. 2004, 10, 476-489.
[83]Wilmarth, P.; Tanner, S.; Dasari, S.; Nagalla, S.; Riviere, M.; Bafna, V.; Pevzner, P.; David, L., Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J. Proteome Res. 2006, 5, 2554-2566.
[84]Aquilina, J. A.; Benesch, J. L.; Ding, L. L.; Yaron, O.; Horwitz, J.; Robinson, C. V., Phosphorylation of αB-crystallin alters chaperone function through loss of dimeric substructure. J. Biol. Chem.2004, 279, 28675-28680.
[85]Ecroyd, H.; Meehan, S.; Horwitz, J.; Aquilina, J. A.; Benesch, J. L.; Robinson, C. V.; Macphee, C. E.; Carver, J. A., Mimicking phosphorylation of αB-crystallin affects its chaperone activity. Biochem. J.2007, 401, 129-141.
[86]Kim, Y. H.; Kapfer, D. M.; Boekhorst, J.; Lubsen, N. H.; Bächinger, H. P.; Shearer, T. R.; David, L. L.; Feix, J. B.; Lampi, K. J., Deamidation, but not truncation, decreases the urea stability of a lens structural protein, βB1-crystallin. Biochemistry 2002, 41, 14076-14084.
[87]Harms, M. J.; Wilmarth, P. A.; Kapfer, D. M.; Steel, E. A.; David, L. L.; Bächinger, H. P.; Lampi, K. J., Laser light‐scattering evidence for an altered association of βB1‐crystallin deamidated in the connecting peptide. Protein Sci. 2004, 13, 678-686.
[88]Hanson, S. R.; Hasan, A.; Smith, D. L.; Smith, J. B., The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp. Eye Res.2000, 71, 195-207.
[89]Lin, P. P.; Barry, R. C.; Smith, D. L.; Smith, J. B., In vivo acetylation identified at lysine 70 of human lens αA‐crystallin. Protein Sci. 1998, 7, 1451-1457.
[90]MacCoss, M. J.; McDonald, W. H.; Saraf, A.; Sadygov, R.; Clark, J. M.; Tasto, J. J.; Gould, K. L.; Wolters, D.; Washburn, M.; Weiss, A., Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. U.S.A 2002, 99, 7900-7905.
[91]Prabhakaram, M.; Katz, M. L.; Ortwerth, B. J., Glycation mediated crosslinking between α-crystallin and MP26 in intact lens membranes. Mech. Ageing Dev.1996, 91, 65-78.
[92]Santhoshkumar, P.; Raju, M.; Sharma, K. K., alphaA-crystallin peptide SDRDKFVIFLDVKHF accumulating in aging lens impairs the function of alpha-crystallin and induces lens protein aggregation. PloS One 2011, 6, e19291.
[93]Roberts, J. E., Photobiology of the Human Lens. Original research article, Fordham University, Department of Natural Sciences, New York, NY 2011.
[94]Kannan, R.; Raju, M.; Sharma, K. K., The critical role of the central hydrophobic core (residues 71-77) of amyloid-forming alphaA66-80 peptide in alpha-crystallin aggregation: a systematic proline replacement study. Amyloid 2014, 21, 103-9.
[95]Esler, W. P.; Stimson, E. R.; Ghilardi, J. R.; Lu, Y.-A.; Felix, A. M.; Vinters, H. V.; Mantyh, P. W.; Lee, J. P.; Maggio, J. E., Point substitution in the central hydrophobic cluster of a human β-amyloid congener disrupts peptide folding and abolishes plaque competence. Biochemistry 1996, 35, 13914-13921.
[96]Hilbich, C.; Kisters-Woike, B.; Reed, J.; Masters, C. L.; Beyreuther, K., Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer's disease βA4 peptides. J. Mol. Biol. 1992, 228, 460-473.
[97]Raju, M.; Santhoshkumar, P.; Sharma, K. K., Lens Endogenous Peptide alphaA66-80 Generates Hydrogen Peroxide and Induces Cell Apoptosis. Aging Dis. 2017, 8, 57-70.
[98]Kumarasamy, A.; Jeyarajan, S.; Cheon, J.; Premceski, A.; Seidel, E.; Kimler, V. A.; Giblin, F. J., Peptide-induced formation of protein aggregates and amyloid fibrils in human and guinea pig αA-crystallins under physiological conditions of temperature and pH. Exp. Eye Res.2019, 179, 193-205.