簡易檢索 / 詳目顯示

研究生: 黃俊皓
Huang, Chun-Hao
論文名稱: 以理論計算探討含硫系統之光譜動力學效應與能源應用
A Theoretical Investigation on the Photodynamic Effect and Energy Applications of Sulfur-Containing Systems
指導教授: 李祐慈
Li, Yu-Tzu
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 202
DOI URL: http://doi.org/10.6345/NTNU202001730
論文種類: 學術論文
相關次數: 點閱:209下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主旨為探討嶄新含硫系統在應用於有機發光二極體 (Organic Light-Emitting Diode, OLED) 或電池等能源相關材料時之獨特性質。本篇論文共分為兩個部分。在第一部分(第三、四、五章)中,我們以第一原理計算探討含硫之有機小分子系統的光譜動力學效應。第二部分(第六章)是以理論計算探討將一維TiS2(en)奈米結構應用於鋰離子電池電極之可行性。
    在第一部份中,我們探討在有機小分子系統中引入硫羰基之光物理現象。含硫羰基之有機小分子的最低單重激發態(S1)之躍遷為nπ*,同時硫原子的重原子效應可促使S1(nπ*)-Tn(ππ*)間自旋-軌道耦合的進行,進而導致室溫磷光的產生。在第三章中,我們以人工合成之DNA鹼基對dTPT3為雛形,精心設計了一系列的純有機小分子,並由共同合作之台大周必泰教授實驗室進行合成與光譜測量。其中擁有硫羰基物種之S1(1nπ*)與T1(3ππ*)能階間SOC積分值遠大於擁有羰基之物種,此現象歸因於前者適當的激發態能階排列與硫的重原子效應,進而導致在室溫下的溶液或固態中皆能夠同時產生螢光與磷光。
    在第四章中,我們與台大周必泰教授實驗室合作並共同發表了O-H----S氫鍵的形成以及其激發態分子內氫鍵開關反應所導致的室溫磷光。在此篇具開創性的文獻中,此現象由擁有強極性(C-O-H)----分散性(S=C)型氫鍵之DM-7HIT所展示。經激發後,DM- 7HIT異常地在550與685 nm處出現了雙重室溫磷光。我們發現DM- 7HIT最低激發態(S1)之躍遷為硫之非鍵結軌域(n)至π*,造成O-H鍵從有氫鍵之S1(nπ*)結構翻轉為無氫鍵之S’1(nπ*)結構,再透過系統間跨越與內轉換使T’1(nπ*)之電子分布提升。快速的氫鍵開/關行為在T’1(nπ*)與T1(nπ*)間發生,並在平衡達成後放出T1(nπ*,550 nm)與T’1(nπ*,685 nm)雙重磷光。這些結果證實含硫氫鍵開關機制的普遍性,也對氫鍵的化學開啟了一個新的篇章。
    在第五章中,我們使用第一原理計算探索硫酮衍生物中S2能階不同的去活化路徑。本研究所使用之模擬模型包含先前已成功合成之硫酮化合物與人工設計之分子,以找出可能可以展現S2激子分裂現象之基本共振單元。我們將不同的分子骨架以及取代基進行交互配對以調控較低能量能階之相對排列。透過合理且精細的分子設計,我們發現被改造之硫酮衍生物擁有接近2 eV之大的S2-S1能差同時也擁有進行稀有S2激子分裂的可能性,其三重態激子之放光波段被預測在紅光與近紅外光的範圍。
    在第二部份 (第六章) 中,我們擴大了所研究的含硫系統大小至一維鍊狀固態晶體結構。TiS2(en)為對層狀結構之TiS2使用維度縮減方法所切割出之一維鏈狀產物。我們使用第一原理計算,發現鋰原子嵌入LixTiS2(en)的過程遵循Rüdorff模型,且被預測將沿著一維TiS2(en)結構之軸方向進行擴散。LixTiS2(en)僅約0.27 eV的擴散能障近似於已商業化之LixCoO2(約0.21 eV)與LixFePO4(約0.16 eV),表示鋰離子可順暢地在LixTiS2(en)中進行移動。LixTiS2(en)(0≦x≦1)之開路電壓為1.6 V至1.04 V,介於如1M LiPF6 in EC/DEC (1:1)之常見電解液的穩定工作電壓範圍(1.0 V – 4.7 V)內。有鑑於上述性質,TiS2(en)有機會被設計為一高安全性、擁有足夠輸出電壓,且能快速充放電的電池。此研究可激發未來對維度縮減之奈米結構在鋰離子電池之應用,相信可對尚未被發掘出的優勢進行更深入的探索。

    This thesis focuses on the physical properties of novel sulfur-containing systems aiming for practical applications on organic light-emitting diodes, batteries, and other energy materials. This thesis includes two parts. In the first part (the 3rd to the 5th chapters), we explore some of the important photophysical properties that sulfur atom exhibits in small and pure organic systems. In the second part (the 6th chapter), we evaluate the feasibility of the application of the 1D TiS2(en) nanostructure on lithium-ion battery electrode.
    In the first part (Chapter 3 to Chapter 5), we design and simulate a series of small organic molecules based on the unnatural DNA base pair, dTPT3. Through the collaboration with Prof. Pi-Tai Chou’s group in Natinoal Taiwan University (NTU), we find that for organic molecules bearing the thiocarbonyl group, a much larger SOC integral between S1(1nπ*) and T1(3ππ*) states can be achieved compared with their carbonyl counterparts. This is due to the appropriate energy level alignment and the heavy sulfur atom effect, resulting in the appearance of both fluorescence and phosphorescence in solution and solid state at room temperature.
    In Chapter 4, we collaborate with Prof. Pi-Tai Chou’s group in NTU and report on the uncommon O-H----S hydrogen-bond (H-bond) formation and its excited-state intramolecular H-bond on/off reaction unveiled by room-temperature phosphorescence (RTP). In this seminal work, this phenomenon is demonstrated with 7-hydroxy-2,2-dimethyl-2,3-dihydro- 1H-indene-1-thione (DM-7HIT), which possesses a strong polar (hydroxy)-dispersive (thione) type H-bond. Upon excitation, DM-7HIT exhibits anomalous dual RTP with maxima at 550 and 685 nm. This study finds that the lowest lying excited state (S1) of DM-7HIT is a sulfur nonbonding (n) to π* transition, which undergoes O-H bond flipping from S1(nπ*) to the non-H-bonded S’1(nπ*) state, followed by intersystem crossing and internal conversion to populate the T’1(nπ*) state. Fast H-bond on/off switching then takes place between T’1(nπ*) and T1(nπ*), forming a pre-equilibrium that affords both the T’1(nπ*, 685 nm) and T1(nπ*, 550 nm) RTP. The generality of the sulfur H-bond on/off switching mechanism, dubbed a molecule wiper, is rigorously evaluated with a variety of other H-bonded thiones. These results open a new chapter in the chemistry of hydrogen bonds.
    In Chapter 5, we explore the possibilities of different S2 deactivating pathways in thiones through first-principles calculations. Several theoretical models including the previously synthesized thiones and the artificially designed molecules are investigated to find the basic conjugation unit that exhibits the prospect of S2 fission. Various molecular motifs and different substituents are combined to maneuver the relative alignment of the relevant low excited energy states. Through rational and delicate molecular designs, we find that the thione derivatives may be engineered to possess a large S2-S1 energy gap as high as 2 eV and that these systems may exhibit a rare S2 fission to triplet excitons in the red to near infrared region.
    In the second part (Chapter 6), first-principles investigations on 1D TiS2(en) are performed to evaluate its potential as the electrode of lithium ion batteries. The intercalation of lithium ions into LixTiS2(en) follows the Rüdorff model and the lithium ions are predicted to diffuse along the one-dimensional axis of the TiS2(en) nanostructure. The small diffusion barrier of 0.27 eV of LixTiS2(en) is comparable to the commercialized LixCoO2 (≈0.21 eV) and LixFePO4(≈0.16 eV) electrodes, implying a facile transportation of lithium ions in LixTiS2(en). The voltage range of LixTiS2(en) is 1.6 V to 1.04 V for 0≦x≦1, which matches the wide stability window of an approximate 1.0 V - 4.7 V in the commonly-used 1 M LiPF6 in EC/DEC (1:1) electrolyte. In view of the above characters, TiS2(en) may be utilized to construct a safe LIB with an adequate voltage output and fast charging/discharging rate.

    謝誌 I 中文摘要 III Abstract V 表目錄 XIV 圖目錄 XVI 第一章 緒論 1 1-1硫的化學反應特性 1 1-1-1硫羰基的光物理性質探討 2 1-1-2硫羰基的氫鍵效應 3 1-2硫酮化合物應用於單重態激子分裂材料之潛力 4 1-2-1單重態激子分裂於太陽能電池之應用 4 1-2-2單重態激子分裂材料 5 1-3金屬硫化物於鋰電池之應用 8 1-3-1以維度縮減法控制電極材料之奈米結構 8 1-3-2 TiS2奈米結構 9 1-4 參考文獻 10 第二章 理論計算原理與方法 19 2-1分子力學 (Molecular Mechanics) 19 2-2半經驗法 (Semiempirical Method) 20 2-3全初始法(Ab Initio Method)/第一原理方法(First Principles Method) 21 2-4量子力學(Quantum Mechanics)簡史 21 2-5分子系統中與時間無關的薛丁格方程式 23 2-5-1與時間無關的薛丁格方程式(time-independent Schrödinger equation) 23 2-5-2波恩-奧本海默近似法 (Born-Oppenheimer approximation) 24 2-5-3平均場理論 (Mean-Field Theory) 24 2-5-4變分原理(variational principle) 25 2-6 Hartree-Fock (HF) Method 26 2-6-1斯萊特行列式 (Slater determinant) 26 2-6-2鋰原子之ESlater 27 2-6-3 Exact exchange 27 2-6-4精確能(Exact energy) &關聯能(Correlation energy) 28 2-6-5 Fock equation 29 2-6-6自洽場 (Self-Consistent Field, SCF) 30 2-6-7 LCAO-MO 30 2-6-8 Roothan equation 31 2-7 HF correlation energy之修正方法 32 2-7-1 Møller-Plesset Perturbation Theory (MPn) 32 2-7-2 Configuration Interaction (CI) 33 2-7-3 Coupled-Cluster (CC) 34 2-8基底函數(Basis Set) 35 2-8-1 Slater-type and Gaussian-type orbitals 36 2-8-2 Single-zeta 38 2-8-3 Multiple-zeta 38 2-8-4 Pople-type basis set 39 2-8-5極化函數(Polarization function) 39 2-8-6擴散函數(Diffuse function) 40 2-8-7 Pople-type Basis set之組成 41 2-8-8 Correlation-consistent (cc) basis set 44 2-8-9 Pople diagram 45 2-9 密度泛函理論 (Density Functional Theory, DFT) 46 2-9-1 Thomas-Fermi model 46 2-9-2 Hohenberg-Kohn Theorem 47 2-9-3 Kohn-Sham(KS) Method 47 2-9-4 Hohenberg-Kohn Variational Theorem 48 2-9-5 LDA/GGA 49 2-9-6 Hybrid DFT 49 2-10能帶理論 (Energy Band Theory) 50 2-10-1單位晶胞(unit cell)/原胞(primitive cell) 50 2-10-2布拉菲晶格(Bravais lattice) 51 2-10-3 Weigner-Seitz cell 52 2-10-4倒晶格空間(Reciprocal space) 52 2-10-5布里淵區(Brillouin zone) 53 2-10-6 k量子數 54 2-10-7布洛赫理論(Bloch theorem) 55 2-10-8贋勢(Pseudopotentials) &平面波(Plane waves) 56 2-10-9範數/模守恆贋勢 (Norm-conserving Pseudopotential) 57 2-10-10超軟贋勢 (Ultrasoft Pseudopotential) 58 2-10-11電子密度(n)的平移不變性 59 2-10-12能帶圖 (Band Diagram) 60 2-10-13一維理想系統之能帶圖 61 2-10-14 Peierls distortion (Dimerization) 63 2-10-15價帶(Valence Band) &導帶(Conduction Band) 64 2-10-16能隙 (Energy Band Gap) /禁帶寬度 (Width of Forbidden Band) 64 2-10-17直接/間接能隙 (Direct/Indirect Band Gap) 65 2-10-18 Fermi-Dirac Distribution 66 2-10-19費米面(Fermi surface) 67 2-10-20半極性金屬(Half-metal) 70 2-10-21 Smearing 71 2-10-22能帶之曲率半徑 71 2-10-23態密度(Density of State, DOS) 72 2-10-24 Van Hove Singularity 73 2-10-25局域態密度(Local Density of State, LDOS) 74 2-10-26近自由電子模型 (Nearly-Free Electron Model) 75 2-10-27緊束縛模型 (Tight Binding Model) 76 2-11計算過程之相關專有名詞介紹 77 2-11-1位能曲面(Potential Energy Surface, PES) 77 2-11-2簡正模 (Normal Modes) 78 2-11-3蒙地卡羅方法(Monte Carlo Method) 79 2-11-4波茲曼分布(Boltzmann distribution) 80 2-11-5溶劑效應(Solvation Effect) 80 2-11-6微觀溶劑模型(Micro Solvation Model) 81 2-11-7內隱溶劑模型(Implicit Solvent Model) 81 2-11-8共價半徑(Covalent Radius) &凡德瓦半徑(Van Der Waals Radius) 82 2-11-9溶劑化自由能(Free Energy of Solvation) 83 2-11-10介電常數(Dielectric Constant)/相對電容率(Relative Permittivity) 84 2-11-11 Amsterdam Density Functional (ADF) 86 2-11-12零階正規近似 (Zero Order Regular Approximation, ZORA) 86 2-12光物理反應相關專有名詞 87 2-12-1量子產率 (Qunatum Yield, QY) 87 2-12-2螢光強度(Fluorescence Intensity)與生命週期 (Lifetime) 88 2-12-3斯托克斯位移 (Stokes Shift) 88 2-12-4磷光強度 (Phosphorescence Intensity)與生命週期 (Lifetime) 89 2-12-5振子強度 (Oscillator Strength) 89 2-12-6自旋-軌道耦合 (Spin-Orbit Coupling,SOC) 90 2-13參考文獻 92 第三章 擁有硫酮官能基之有機小分子系統的常溫磷光放光現象 99 3-1 前言 99 3-2計算原理及參數 100 3-3 結果與討論 101 3-3-1光物理(photophysical)性質探討 101 4-3-2 電子結構分析 104 3-3-3 鹵素取代 109 3-4本章結論 111 3-5參考文獻 112 第四章 以硫為基底之分子內氫鍵:擁有雙重室溫磷光之激發態氫鍵開關 115 4-1 前言 115 4-2 計算原理及參數 118 4-3 結果與討論 119 4-3-1 合成以及特性鑑定(Synthesis and Characterization) 119 4-3-2 光譜與動力學 120 4-3-3 氫鍵開關機制(H-Bond On/Off Mechanism) 128 4-4本章結論 133 4-5參考文獻 134 第五章 探討有機含硫系統進行S2單重態激子分裂之潛力之理論計算研究 139 5-1 前言 139 5-2計算原理及參數 141 5-3結果與討論 141 5-3-1模型系統之電子結構 141 5-3-2 DMIT系列之氮取代 150 5-3-3 CPA系列之氮取代 156 5-3-4 i-CPON系列之取代效應 164 5-4本章結論 170 5-5參考資料 172 第六章 一維TiS2(en)奈米結構在鋰離子電池的應用之理論計算研究 177 6-1前言 177 6-2計算原理及參數 179 6-3結果與討論 180 6-3-1 TiS2(en)與LiTiS2(en)之幾何結構 180 6-3-2鋰在TiS2(en)結構中的嵌入 184 6-3-3鋰在TiS2(en)結構中的擴散 188 6-4本章結論 192 6-5參考文獻 193 第七章 總結 197 附錄一 著作列表 199

    Chapter 1
    (1) Y. Han, Y. You, Y. M. Lee, and W. Nam, Adv. Mater. 2012, 24, 2748-2754.
    (2) L. Xiong, Q. Zhao, H. Chen, Y. Wu, Z. Dong, Z. Zhou, and F. Li, Inorg. Chem. 2010, 49, 6402-6408.
    (3) L. Li, M. Degardin, T. Lavergne, D. A. Malyshev, K. Dhami, P. Ordoukhanian and F. E. Romesberg, J. Am. Chem. Soc. 2014, 136, 826–829.
    (4) D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling, L. Zhi, and Q. H. Yang, Adv. Sci. 2018, 5, 1700270.
    (5) J. D. Coyle, Tetrahedron 1985, 41, 5393-5425.
    (6) D. Crich and L. Quintero, Chem. Rev. 1989, 89, 1413-1432.
    (7) E. G. Jayasree and S. Sreedevi, Chem. Phys. 2020, 530, 110650.
    (8) S. K. Pandey, S. Pratap, M. K. Tiwari, G. Marverti and J. P. Jasinski, J. Mol. Struct. 2019, 1175, 963-970.
    (9) S. M. Habibi-Khorassani, M. Dehdab and M. Darijani, Iran. Chem. Commun. 2019, 7, 455-471.
    (10) R. C. Evans, P. Douglas and C. J. Winscom, J. Fluoresc. 2009, 19, 169-177.
    (11) M. J. Copley, C. S. Marvel and E. Ginsberg, J. Am. Chem. Soc. 1939, 61, 3161−3162.
    (12) W. Gordy and S. C. Stanford, J. Am. Chem. Soc. 1940, 62, 497−505.
    (13) T. G. Heafield, G. Hopkins and L. Hunter, Nature 1942, 149, 218−218.
    (14) L. González, O. Mó and M. Yáñez, J. Phys. Chem. A, 1997, 101, 9710-9719.
    (15) M. Jabłonski, A. Kaczmarek and A. J. Sadlej, J. Phys. Chem. A 2006, 110, 10890−10898.
    (16) A. Nowroozi, H. Roohi, H. Hajiabadi, H. Raissi, E. Khalilinia and M. N. Birgan, Comput. Theor. Chem. 2011, 963, 517−524.
    (17) Y. Posokhov, A. Gorski, J. Spanget-Larsen, F. Duus, P. E. Hansen and J. Waluk, Chem. Phys. Lett. 2001, 350, 502−508.
    (18) H. S. Biswal and S. Wategaonkar, J. Phys. Chem. A 2009, 113, 12763−12773.
    (19) H. S. Biswal and S. Wategaonkar, J. Phys. Chem. A 2009, 113, 12774−12782.
    (20) M. Saggu, N. M. Levinson and S. G. Boxer, J. Am. Chem. Soc. 2011, 133, 17414−17419.
    (21) M. Saggu, N. M. Levinson and S. G. Boxer, J. Am. Chem. Soc. 2012, 134, 18986−18997.
    (22) Z. P. Bruvers and I. V. Zuika, Chem. Heterocycl. Compd. 1980, 16, 1243-1245.
    (23) L. González, O. Mó and M. Yáñez, J. Phys. Chem. A, 1997, 101, 9710-9719.
    (24) W. Shockley, and H. J. Queisser, J. Appl. Phys. 1961, 32, 510-519.
    (25) S. W. Glunz, F. Feldmann, A. Richter, M. Bivour, C. Reichel, H. Steinkemper, ... and M. Hermle, In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition 2015, 259-263.
    (26) J. F. Geisz, M. A. Steiner, I. Garcia, S. R. Kurtz, and D. J. Friedman, Appl. Phys. Lett. 2013, 103, 041118.
    (27) B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, In 2011 37th IEEE Photovoltaic Specialists Conference 2011, 000004-000008.
    (28) M. C. Hanna, and A. J. Nozik, J. Appl. Phys. 2006, 100, 074510-074517.
    (29) M. A. Green, Third generation photovoltaics. 2006.
    (30) A. J. Nozik, Physica E Low Dimens. Syst. Nanostruct. 2002, 14, 115-120.
    (31) M. A. Green, Third generation photovoltaics: advanced solar energy conversion. PhT, 2004, 57, 71-72.
    (32) S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider, J. Chem. Phys. 1965, 42, 330-342.
    (33) A. J. Nozik, R. J. Ellingson, O. I. Mićić, J. L. Blackburn, P. Yu, J. E. Murphy, and G. Rumbles, In Proceedings of the 27th DOE Solar Photochemistry Research Conference 2004 , 6-9.
    (34) J. J. Burdett, A. M. Müller, D. Gosztola, and C. J. Bardeen, J. Cheml Phys. 2010, 133, 144506.
    (35) J. Lee, P. Jadhav, and M. A. Baldo, Appl. phys. Lett. 2009, 95, 033301.
    (36) A. Rao, M. W. Wilson, J. M. Hodgkiss, S. Albert-Seifried, H. Bassler, and R. H. Friend, J. Am. Chem. Soc. 2010, 132, 12698-12703.
    (37) J. C. Johnson, A. J. Nozik, and J. Michl, J. Am. Chem. Soc. 2010, 132, 16302-16303.
    (38) C. Wang, and M. J. Tauber, J. Am. Chem. Soc. 2010, 132, 13988-13991.
    (39) R. D. Pensack, E. E. Ostroumov, A. J. Tilley, S. Mazza, C. Grieco, K. J. Thorley, ... and G. D. Scholes, J. Phys. Chem. Lett. 2016, 7, 2370-2375.
    (40) G. D. Scholes, J. Phys. Chem. A 2015, 119, 12699-12705.
    (41) G. Klein, R. Voltz, and M. Schott, Chem. Phys. Lett. 1972, 16, 340-344.
    (42) G. Klein, R. Voltz, and M. Schott, Chem. Phys. Lett. 1973, 19, 391-394.
    (43) S. Arnold, J. Chem. Phys. 1974, 61, 431-432.
    (44) J. Fuenfschilling, K. Von Burg, and I. Zschokke-Graenacher, Chem. Phys. Lett. 1978, 55, 344-346.
    (45) R. Katoh, and M. Kotani, Chem. Phys. Lett. 1992, 196, 108-112.
    (46) H. C. Wolf, Solid state physics 1959, 9, 1-81
    (47) P. Avakian, E. Abramson, R. G. Kepler, and J. C. Caris, J. Chem. Phys. 1963, 39, 1127-1128.
    (48) N. Geacintov, M. Pope, and F. Vogel, Phys. Rev. Lett. 1969, 22, 593-596.
    (49) N. E. Geacintov, M. Pope, and S. Fox, J. Phys. Chem. Solids 1970, 31, 1375-1379.
    (50) J. J. Burdett, D. Gosztola, and C. J. Bardeen, J. Chem. Phys. 2011, 135, 214508.
    (51) S. Arnold, and W. B. Whitten, J. Chem. Phys. 1981, 75, 1166–1169
    (52) G. Vaubel, and H. Baessler, Mol. Cryst. Liq.Cryst. 1971, 15, 15-25.
    (53) G. Vaubel, and H. Baessler, Mol. Cryst. Liq.Cryst. 1970, 12, 47-56.
    (54) Y. Tomkiewicz, R. P. Groff, and P. Avakian, J. Chem. Phys. 1971, 54, 4504-4507.
    (55) N. E. Geacintov, M. Binder, C. E. Swenberg, and M. Pope, Phys. Rev. B 1975, 12, 4113-4134.
    (56) W. M. Moller, and M. Pope, J. Chem. Phys. 1973, 59, 2760-2761.
    (57) H. Bouchriha, V. Ern, J. L. Fave, C. Guthmann, and M. Schott, J. Phys. (Paris) 1978, 39, 257-271.
    (58) S. Arnold, R. R. Alfano, M. Pope, W. Yu, P. Ho, R. Selsby, ... and C. E. Swenberg, J. Chem. Phys. 1976, 64, 5104-5114.
    (59) J. B. Aladekomo, S. Arnold, and M. Pope, Phys. Status Solidi B 1977, 80, 333-340.
    (60) W. L. Chan, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-Avila, and X. Y. Zhu, Science 2011, 334, 1541-1545.
    (61) H. Marciniak, M. Fiebig, M. Huth, S. Schiefer, B. Nickel, F. Selmaier, and S. Lochbrunner, Phys. Rev. Lett. 2007, 99, 176402-176405.
    (62) H. Marciniak, I. Pugliesi, B. Nickel, and S. Lochbrunner, Phys. Rev. B 2009, 79, 235318.
    (63) V. K. Thorsmølle, R. D. Averitt, J. Demsar, D. L. Smith, S. Tretiak, R. L. Martin, ... and A. J. Taylor, Phys. Rev. Lett. 2009, 102, 017401-017404.
    (64) V. K. Thorsmølle, R. D. Averitt, J. Demsar, D. L. Smith, S. Tretiak, R. L. Martin, ... and A. J. Taylor, Physica B Condens. Matter 2009, 404, 3127-3130.
    (65) M. W. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo, and R. H. Friend, J. Am. Chem. Soc. 2011, 133, 11830-11833.
    (66) J. C. Johnson, T. H. Reilly III, A. C. Kanarr, and J. van de Lagemaat, J. Phys. Chem. C, 2009, 113, 6871-6877.
    (67) C. Jundt, G. Klein, B. Sipp, J. Le Moigne, M. Joucla, and A. A. Villaeys, Chem. Phys. Lett. 1995, 241, 84-88.
    (68) L. Sebastian, G. Weiser, and H. Bässler, Chem. Phys. 1981, 61, 125-135.
    (69) N. E. Geacintov, J. Burgos, M. Pope, and C. Strom, Chem. Phys. Lett. 1971, 11, 504-508.
    (70) A. Akdag, Z. Havlas, and J. Michl, J. Am. Chem. Soc. 2012, 134, 14624-14631.
    (71) W. L. Chan, M. Ligges, and X. Y. Zhu, Nat. Chem. 2012, 4, 840-845.
    (72) M. Tuan Trinh, A. Pinkard, A. B. Pun, S. N. Sanders, E. Kumarasamy, M. Y. Sfeir, L. M. Campos, X. Roy and X. Y. Zhu, Sci. Adv. 2017, 3, e1700241
    (73) S. N. Sanders, E. Kumarasamy, A. B. Pun, M. L. Steigerwald, M. Y. Sfeir, and L. M. Campos, Chem. 2016, 1, 505-511.
    (74) K. Aryanpour, T. Dutta, U. N. Huynh, Z. V. Vardeny, and S. Mazumdar, Phys. Rev. Lett. 2015, 115, 267401-267405.
    (75) M. B. Smith, and J. Michl, Chem. Rev. 2010, 110, 6891-6936.
    (76) M. B. Smith, and J. Michl, Ann. Rev. Phys. Chem. 2013, 64, 361-386.
    (77) L. Wang, Y. Olivier, O. V. Prezhdo, and D. Beljonne, J. Phys. Chem. Lett. 2014, 5, 3345-3353.
    (78) Y. J. Bae, G. Kang, C. D. Malliakas, J. N. Nelson, J. Zhou, R. M. Young, ... and M. R. Wasielewski, J. Am. Chem. Soc. 2018, 140, 15140-15144.
    (79) B. Manna, A. Nandi, and R. Ghosh, J. Phys. Chem. C 2018, 122, 21047-21055.
    (80) A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. Wilson, A. W. Chin, D. igmantas, ... and A. Rao, Nat. Chem. 2016, 8, 16-23.
    (81) A. J. Musser, M. Liebel, C. Schnedermann, T. Wende, T. B. Kehoe, A. Rao, and P. Kukura, Nat. Phys. 2015, 11, 352-357.
    (82) H. L. Stern, A. Cheminal, S. R. Yost, K. Broch, S. L. Bayliss, K. Chen, ... and J. Anthony, Nat. Chem. 2017, 9, 1205.
    (83) N. R. Monahan, D. Sun, H. Tamura, K. W. Williams, B. Xu, Y. Zhong, ... and H. L. Dai, Nat. Chem. 2017, 9, 341.
    (84) E. Busby, T. C. Berkelbach, B. Kumar, A. Chernikov, Y. Zhong, H. Hlaing, ... and D. R. Reichman, J. Am. Chem. Soc. 2014, 136, 10654-10660.
    (85) H. Tamura, M. Huix-Rotllant, I. Burghardt, Y. Olivier, and D. Beljonne, Phys. Rev. Lett. 2015, 115, 107401.
    (86) P. Irkhin, and I. Biaggio, Phys. Rev. Lett. 2011, 107, 017402.
    (87) P. H. Sher, C. H. Chen, T. L. Chiu, C. F. Lin, J. K. Wang, and J. H. Lee, J. Phys. Chem. C 2019, 123, 3279-3284.
    (88) L. Ma, K. Zhang, C. Kloc, H. Sun, M. E. Michel-Beyerle, and G. G. Gurzadyan, Phys. Chem. Chem. Phys. 2012, 14, 8307-8312.
    (89) B. J. Walker, A. J. Musser, D. Beljonne, and R. H. Friend, Nat. Chem. 2013, 5, 1019.
    (90) H. L. Stern, A. J. Musser, S. Gelinas, P. Parkinson, L. M. Herz, M. J. Bruzek, ... and B. J. Walker, Proc. Natl. Acad. Sci. 2015, 112, 7656-7661.
    (91) Y. Wu, K. Liu, H. Liu, Y. Zhang, H. Zhang, J. Yao, and H. Fu, J. Phys. Chem. Lett. 2014, 5, 3451-3455.
    (92) J. Zirzlmeier, D. Lehnherr, P. B. Coto, E. T. Chernick, R. Casillas, B. S. Basel, ... and D. M. Guldi, Proc. Natl. Acad. Sci. 2015, 112, 5325-5330.
    (93) S. R. Reddy, P. B. Coto, and M. Thoss, J. Phys. Chem. Lett. 2018, 9, 5979-5986.
    (94) D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, ... and M. A. Baldo, Science 2013, 340, 334-337.
    (95) B. S. Basel, J. Zirzlmeier, C. Hetzer, B. T. Phelan, M. D. Krzyaniak, S. R. Reddy, ... and F. Hampel, Nat. Commun. 2017, 8, 1-8.
    (96) B. S. Basel, J. Zirzlmeier, C. Hetzer, S. R. Reddy, B. T. Phelan, M. D. Krzyaniak, ... and M. Thoss, Chem. 2018, 4, 1092-1111.
    (97) T. Sakuma, H. Sakai, Y. Araki, T. Mori, T. Wada, N. V. Tkachenko, and T. Hasobe, J. Phys. Chem. A 2016, 120, 1867-1875.
    (98) S. N. Sanders, E. Kumarasamy, A. B. Pun, M. T. Trinh, B. Choi, J. Xia, ... and X. Y. Zhu, J. Am. Chem. Soc. 2015, 137, 8965-8972.
    (99) B. S. Basel, C. Hetzer, J. Zirzlmeier, D. Thiel, R. Guldi, F. Hampel, ... and R. R. Tykwinski, Chem. Sci. 2019, 10, 3854-3863.
    (100) J. D. Cook, T. J. Carey, and N. H. Damrauer, J. Phys. Chem. A 2016, 120, 4473-4481.
    (101) J. D. Cook, T. J. Carey, D. H. Arias, J. C. Johnson, and N. H. Damrauer, J. Phys. Chem. A 2017, 121, 9229-9242.
    (102) A. T. Gilligan, E. G. Miller, T. Sammakia, and N. H. Damrauer, J. Am. Chem. Soc. 2019, 141, 5961-5971.
    (103) H. Liu, R. Wang, L. Shen, Y. Xu, M. Xiao, C. Zhang, and X. Li, Org. Lett. 2017, 19, 580-583.
    (104) H. Liu, Z. Wang, X. Wang, L. Shen, C. Zhang, M. Xiao, and X. Li, J. Mater. Chem. C 2018, 6, 3245-3253.
    (105) L. M. Yablon, S. N. Sanders, H. Li, K. R. Parenti, E. Kumarasamy, K. J. Fallon, ... and L. M. Campos, J. Am. Chem. Soc. 2019, 141, 9564-9569.
    (106) A. B. Pun, S. N. Sanders, E. Kumarasamy, M. Y. Sfeir, D. N. Congreve, and L. M. Campos, Adv. Mater. 2017, 29, 1701416.
    (107) D. Casanova, Chem. Rev. 2018, 118, 7164-7207.
    (108) K. Miyata, F. S. Conrad-Burton, F. L. Geyer, and X. Y. Zhu, Chem. Rev. 2019, 119, 4261-4292.
    (109) E. A. Margulies, C. E. Miller, Y. Wu, L. Ma, G. C. Schatz, R. M. Young, and M. R. Wasielewski, Nat. Chem. 2016, 8, 1120.
    (110) N. V. Korovina, S. Das, Z. Nett, X. Feng, J. Joy, R. Haiges, ... and M. E. Thompson, J. Am. Chem. Soc. 2016, 138, 617-627.
    (111) R. Casillas, I. Papadopoulos, T. Ullrich, D. Thiel, A. Kunzmann, and D. M. Guldi, Energy Environ. Sci. 2020.
    (112) E. Tenori, A. Colusso, Z. Syrgiannis, A. Bonasera, S. Osella, A. Ostric, ... and M. Prato, ACS Appl. Mater. Interfaces 2015, 7, 28042-28048.
    (113) R. Wang, G. Li, Y. Zhou, P. Hao, Q. Shang, S. Wang, ... and Z. Shi, Asian J. Org. Chem. 2018, 7, 702-706.
    (114) G. Li, Y. Zhao, J. Li, J. Cao, J. Zhu, X. W. Sun, and Q. Zhang, J. Org. Chem. 2015, 80, 196-203.
    (115) F. Würthner, C. R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, and D. Schmidt, Chem. Rev. 2016, 116, 962-1052.
    (116) T. Mukhopadhyay, A. J. Musser, B. Puttaraju, J. Dhar, R. Friend, and S. Patil, Is the Chemical Strategy for imbuing ‘Polyene’. 2017.
    (117) C. M. Mauck, P. E. Hartnett, Y. L. Wu, C. E. Miller, T. J. Marks, and M. R. Wasielewski, Chem. Mater. 2017, 29, 6810-6817.
    (118) C. M. Mauck, Y. J. Bae, M. Chen, N. Powers‐Riggs, Y. L. Wu, and M. R. Wasielewski, ChemPhotoChem 2018, 2, 223-233.
    (119) L. Shen, Z. Tang, X. Wang, H. Liu, Y. Chen, and X. Li, Phys. Chem. Chem. Phys. 2018, 20, 22997-23006.
    (120) A. M. Levine, C. Schierl, B. S. Basel, M. Ahmed, B. A. Camargo, D. M. Guldi, and A. B. Braunschweig, J. Phys. Chem. C 2019, 123, 1587-1595.
    (121) I. B. Klenina, Z. K. Makhneva, A. A. Moskalenko, A. N. Kuzmin, and I. I. Proskuryakov, Biophysics 2013, 58, 43-50.
    (122) I. B. Klenina, Z. K. Makhneva, A. A. Moskalenko, N. D. Gudkov, M. A. Bolshakov, E. A. Pavlova, and I. I. Proskuryakov, Biochemistry 2014, 79, 235-241.
    (123) D. M. Niedzwiedzki, D. J. Swainsbury, E. C. Martin, C. N. Hunter, and R. E. Blankenship, J. Phys. Chem. B 2017, 121, 7571-7585.
    (124) H. T. Chang, Y. Q. Chang, R. M. Han, P. Wang, J. P. Zhang, and L. H. Skibsted, J. Agr. Food Chem. 2017, 65, 6058-6062.
    (125) I. B. Klenina, A. A. Gryaznov, Z. K. Makhneva, and I. I. Proskuryakov, Dokl. Biochem. Biophys. 2019, 485, 135-137.
    (126) C. Wang, D. E. Schlamadinger, V. Desai, and M. J. Tauber, ChemPhysChem 2011, 12, 2891-2894.
    (127) M. Nakano, Chem. Rec. 2017, 17, 27-62.
    (128) M. Abe, Chem. Rev. 2013, 113, 7011-7088.
    (129) T. Stuyver, B. Chen, T. Zeng, P. Geerlings, F. De Proft, and R. Hoffmann, Chem. Rev. 2019, 119, 11291-11351.
    (130) M. Nakano, Top. Curr. Chem. 2017, 375, 47.
    (131) E. A. Buchanan, J. Kaleta, J. Wen, S. H. Lapidus, I. Císařová, Z. Havlas, ... and J. Michl, J. Phys. Chem. Lett. 2019, 10, 1947-1953.
    (132) H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, ... and H. Dai, Nano Lett. 2011, 11, 2644-2647.
    (133) X. Xu, W. Liu, Y. Kim and J. Cho, Nano Today, 2014, 9, 604-630.
    (134) S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, ... and G. Ceder, Energy Environ. Sci. 2011, 4, 3680-3688.
    (135) T. F. Yi, L. J. Jiang, J. Shu, C. B. Yue, R. S. Zhu and H. B. Qiao, J. Phys. Chem. Solids 2010, 71, 1236-1242.
    (136) A. Urban, D.H. Seo and G. Ceder, Npj Comput. Mater. 2016, 2, 1-13.
    (137) S. P. Ong, A. Jain, G. Hautier, B. Kang and G. Ceder, Electrochem. Commun. 2010, 12, 427-430.
    (138) Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun and C. Chen, J. Power Sources, 2012, 208, 210-224.
    (139) J. B. Goodenough and Y. Kim, Chem. Mater. 2010, 22, 587-603
    (140) S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria and C. Capiglia, J. Power Sources 2014, 257, 421-443.
    (141) X. Xu, W. Liu, Y. Kim and J. Cho, Nano Today 2014, 9, 604-630.
    (142) L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang and G. Schmidt, Oliver, Adv. Mater. 2012, 25, 1180-1184.
    (143) M. Liu, Y. X. Ren, H. R. Jiang, C. Luo, F. Y. Kang and T. S. Zhao, Nano Energy 2017, 40, 240-247.
    (144) R. Malini, U. Uma, T. Sheela, M. Ganesan and N. G. Renganathan, Ionics 2009, 15, 301-307.
    (145) K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805−136808.
    (146) M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science 2001, 292, 1897−1899.
    (147) A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli and F. Wang, Nano Lett. 2010, 10, 1271−1275.
    (148) A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Lett. 2008, 8, 902−907.
    (149) S. Lal, S. Link and N. J. Halas, Nat. Photonics 2007, 1, 641−648.
    (150) S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Science 2001, 294, 1488−1495.
    (151) B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol. 2011, 6, 147−150.
    (152) Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nanotechnol. 2012, 7, 699−712.
    (153) M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An and R. S. Ruoff, Nano Lett. 2008, 8, 3498−3502.
    (154) T. Li and J. E. Goldberger, Chem. Mater. 2015, 27, 3549-3559.
    (155) A. R.West, Basic solid state chemistry; 1999, John Wiley & Sons.
    (156) L. R. Nassimbeni and A. L. Rodgers, Acta Crystallogr. B Struct. Cryst. Cryst. Chem. 1976, 32, 257-260.
    (157) R. J. Flook, H. C. Freeman, F. Huq and J. M. Rosalky, Acta Crystallogr. B Struct. Cryst. Cryst. Chem. 1973, 29, 903-906.
    (158) M. Nieuwenhuyzen, W. T. Robinson and C. J. Wilkins, Acta Crystallogr. C 1993, 49, 1173-1175.
    (159) Y. H. Liu, S. H. Porter and J. E. Goldberger, J. Am. Chem. Soc. 2012, 134, 5044-5047.
    (160) A. H. Thompson, Phys. Rev. Lett. 1975, 35, 1786-1789.
    (161) S. Jeong, D. Yoo, M. Ahn, P. Miró, T. Heine and J. Cheon, Nat. Commun. 2015, 6, 5763
    (162) R. A. L. Morasse, T. Li, Z. J. Baum and J. E. Goldberger, Chem. Mater. 2014, 26, 4776-4780.
    (163) B. Kartick, S. K. Srivastava and S. Mahanty, J. Nanoparticle Res. 2013, 15, 1950.
    (164) Justin M. Whiteley, S. Hafner, S. S. Han, S. C. Kim, V.-D. Le, C. Ban, Y. H. Kim, K. H. Oh and S.-H. Lee, J. Mater. Chem. A 2017, 5, 15661-15668.
    (165) S. N. Li, J. B. Liu and B. X. Liu, J. Power Sources 2016, 320, 322-331.

    Chapter 2
    (1) A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024-10035.
    (2) J. D. Bjorken and S. D. Drell, Relativistic quantum mechanics 1965
    (3) H. C. Hamaker, Physica 1937, 4, 1058-1072.
    (4) J. Bernstein, R. E. Davis, L. Shimoni and N. L. Chang, Angew. Chem. Inter. Ed. Engl. 1995, 34, 1555-1573.
    (5) F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 1944, 30, 244-247.
    (6) J. J. Stewart, J. Comput. Chem. 1989, 10, 221-264.
    (7) E. Clementi and C. Roetti, At. Data Nucl. Data Tables 1974, 14, 177-478.
    (8) E. K. Gross and R. M. Dreizler, Density functional theory 2013.
    (9) J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical kinetics and dynamics 1989.
    (10) M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and A. J. Joannopoulos, Rev. Mod. Phys. 1992, 64, 1045-1097.
    (11) M. Head-Gordon, J. A. Pople and M. J. Frisch, Chem. Phys. Lett. 1988, 153, 503-506.
    (12) A. S. Eddington, Theory of relativity 1957.
    (13) C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators 1950, Los Angeles, CA: United States Governm. Press Office.
    (14) F. D. M. Haldane, Phys. Rev. Lett. 1991, 67, 937-940.
    (15) R. S. Mulliken, J. Chem. Phys. 1955, 23, 1833-1840.
    (16) P. Saxe, Y. Yamaguchi and H. F. Schaefer III, J. Chem. Phys. 1982, 77, 5647-5654.
    (17) W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton and J. A. Pople, “Gaussian 70.” Quantum Chemistry Program Exchange, Program No.237 1970.
    (18) R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems 2003, (Vol. 41, p. 211). Springer.
    (19) G. A. Worth and L. S. Cederbaum, Annu. Rev. Phys. Chem. 2004, 55, 127-158.
    (20) A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys. 1996, 68, 13-125.
    (21) I. Ekeland, J. Math. Anal. Appl. 1974, 47, 324-353.
    (22) J. C. Slater, The self-consistent field for molecules and solids 1974, (Vol. 4). McGraw-Hill.
    (23) R. Hoffmann and W. N. Lipscomb, J. Chem. Phys. 1962, 36, 2179-2189.
    (24) P. W. Anderson and H. Hasegawa, Phys. Rev. 1955, 100, 675-681.
    (25) R. J. Boyd, Nature 1984, 310, 480-481.
    (26) L. E. Orgel, An introduction to transition-metal chemistry: ligand-field theory 1966, Taylor & Francis.
    (27) R. G. Burns and R. G. Burns, Mineralogical applications of crystal field theory 1993. Cambridge university press.
    (28) C. Hampel, K. A. Peterson and H. J. Werner, Chem. Phys. Lett. 1992, 190, 1-12.
    (29) G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910-1918.
    (30) B. Scholkopf, K. K. Sung, C. J. Burges, F. Girosi, P. Niyogi, T. Poggio and V. Vapnik, IEEE Trans. Signal Process. 1997, 45, 2758-2765.
    (31) C. C. J. Roothaan, Rev. Mod. Phys. 1960, 32, 179-185.
    (32) R. B. J. S. Krishnan, J. S.Binkley, R. Seeger and J. A. Pople, J. Chem. Phys. 1980, 72, 650-654.
    (33) S. Grimme, J. Chem. Phys. 2003, 118, 9095-9102.
    (34) T. Kato, Perturbation theory for linear operators 2013, (Vol. 132). Springer Science & Business Media.
    (35) P. W. Atkins and R. S. Friedman, Molecular quantum mechanics 2011, Oxford university press.
    (36) P. J. Knowles and N. C. Handy, Chem. Phys. Lett. 1984, 111, 315-321..
    (37) K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479-483.
    (38) L. Goerigk and S. Grimme, J. Chem. Phys. 2010, 132, 184103.
    (39) K. E. Yousaf and K. A. Peterson, Chem. Phys. Lett. 2009, 476, 303-307.
    (40) W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys. 1969, 51, 2657-2664.
    (41) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261.
    (42) P. E. Hoggan, M. B. Ruiz, and T. Ozdogan, Quantum Frontiers of Atoms and Molecules in Physics, Chemistry, and Biology 2011, 63-90.
    (43) A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571-2577.
    (44) W. J. Pietro and W. J. Hehre, J. Comput. Chem. 1983, 4, 241-251.
    (45) J. H. Jensen, Molecular modeling basics. 2010, CRC Press.
    (46) J. G. Snijders, P. Vernooijs and E. J. Baerends, At. Data Nucl. Data Tables 1981, 26, 483-509.
    (47) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
    (48) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta. 1973, 28, 213-222.
    (49) C. J. Cramer, Essentials of computational chemistry: theories and models. 2013, John Wiley & Sons.
    (50) T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, J. Comput. Chem. 1983, 4, 294-301.
    (51) K. A. Peterson and T. H. Dunning Jr, J. Chem. Phys. 2002, 117, 10548-10560.
    (52) M. Karplus, J. Phys. Chem. 1990, 94, 5435-5436.
    (53) J. Schwinger, Phys. Rev. A 1980, 22, 1827-1832.
    (54) P. Hohenberg and W. Kohn, Phys. Rev. 1964, 136, B864-B871.
    (55) T. L. Gilbert, Phys. Rev. B 1975, 12, 2111-2120.
    (56) J. P. Perdew, R. G. Parr, M. Levy and J. L. Balduz Jr, Phys. Rev. Lett. 1982, 49, 1691-1694.
    (57) S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 1980, 58, 1200-1211.
    (58) J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 1966, 77, 3865-3868.
    (59) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
    (60) C. Lee, Phys. Rev. B 1988, 37, 785-789.
    (61) J. P. Perdew and Y. Wang, Phys. Rev. B 1992, 45, 13244-13249.
    (62) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
    (63) P. J. Stephens, F. J. Devlin, C. F. N. Chabalowski and M. J. Frisch, J. Phys. Chem. 1994, 98, 11623-11627.
    (64) Becke, A. D. J. Chem. Phys. 1996, 104, 1040-1046.
    (65) H. L. Schmider and A. D. Becke, J. Chem. Phys. 1998, 108, 9624-9631.
    (66) Y. Zhao, and D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
    (67) Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 2008, 4, 1849-1868.
    (68) C. Adamo and V. Barone, Chem. Phys. Lett. 1997, 274, 242-250.
    (69) K. Burke, J. P. Perdew and Y. Wang, Electronic Density Functional Theory 1998, 81-111.
    (70) J. Calloway and G. G. Johnson, Energy Band Theory, Phys. Today 1964, 17, 61-62.
    (71) S. Torquato, G. Zhang, and F. H. Stillinger, Phys. Rev. X 2015, 5, 021020.
    (72) N. O. Koca, M. Koca, A. Al-Mukhaini, and A. Al-Qanobi, arXiv preprint arXiv:1506.04600. 2015, 1506, 1-30
    (73) H. J. Monkhorst and J. D. Pack, Phys. Rev. B 1976, 13, 5188-5192.
    (74) R. C. Andrew, T. Salagaram and N. Chetty, Eur. J. Phys. 2017, 38, 035501.
    (75) K. T. Hahn, Canad. J. Math. 1975, 27, 446-458.
    (76) J. C. Phillips and L. Kleinman, Phys. Rev. 1959, 116, 287-294.
    (77) R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications 1986, (Vol. 31999). New York: McGraw-Hill.
    (78) M. Råsander, A Theoretical Perspective on the Chemical Bonding and Structure of Transition Metal Carbides and Multilayers. 2010, (Doctoral dissertation, Acta Universitatis Upsaliensis)
    (79) P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, ... and R. M. Wentzcovitch, J. Phys. Condens. Matter 2009, 21, 395502.
    (80) G. Kresse and J. Furthmuller, Phys. Rev. B 1996, 54, 11169-11186.
    (81) D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett. 1979, 43, 1494-1497.
    (82) K. Laasonen, R. Car, C. Lee and D. Vanderbilt, Phys. Rev. B 1991, 43, 6796-6799.
    (83) V. K. Dolmatov, and J. L. King, J. Phys. B: At. Mol. Opt. Phys. 2012, 45, 225003.
    (84) Q. Wei, M. Zhang, H. Yan, Z. Lin and X. Zhu, EPL 2014, 107, 27007.
    (85) M. Silberberg, Principles of general chemistry. 2012, McGraw-Hill Education.
    (86) R. Comes, M. Lambert, H. Launois and H. R. Zeller, Phys. Rev. B 1973, 8, 571-575.
    (87) W. Wen, C. Dang, and Xie, L. Chinese Phys. B 2019, 28, 058504.
    (88) R. Paschotta, Encyclopedia of laser physics and technology. 2008. (Vol. 1). Berlin: Wiley-vch.
    (89) B. Roose, Engineering metal oxides for UV-stable perovskite solar cells. 2017, (Doctoral dissertation, Université de Fribourg).
    (90) T. Duffield, R. Bhat, M. Koza, F. DeRosa, D. M. Hwang, P. Grabbe and S. J. Allen Jr, Phys. Rev. Lett. 1986, 56, 2724-2727.
    (91) Y. Cao and U. Banin, J. Am. Chem. Soc. 2000, 122, 9692-9702.
    (92) G. A. Amaratunga, D. E. Segal and D. R. McKenzie, Appl. Phys. Lett. 1991, 59, 69-71.
    (93) R. J. Gehrke, R. G. Helmer and R. C. Greenwood, Nucl. Instr. Meth. 1977, 147, 405-423.
    (94) D. K. Seo, and R. Hoffmann, Theor. Chem. Acc. 1999, 102, 23-32.
    (95) J. McDougall and E. C. Stoner, Phil. Trans. Royal. Soc. A 1938, 237, 67-104.
    (96) C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics. 1996, (Vol. 8, pp. 105-130). New York: Wiley.
    (97) C. A. Mead and W. G. Spitzer, Phys. Rev. 1964, 134, A713-A716.
    (98) W. Kohn, Phys. Rev. Lett. 1959, 2, 393-394.
    (99) T. H. Kim, D. M. Nicholson, X. G. Zhang, B. M. Evans, N. S. Kulkarni, E. A. Kenik, and A. P. Li, Jpn. J. Appl. Phys. 2011, 50, 08LB09.
    (100) D. A. Neamen, Semiconductor physics and devices: basic principles 1997, New York, NY: McGraw-Hill.
    (101) D. Johrendt, J. Mater. Chem. 2011, 21, 13726-13736.
    (102) C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, ... and Y. Chen, Nat. Phys. 2015, 11, 645-649.
    (103) M. Eschrig, J. Kopu, J. C. Cuevas and G. Schön, Phys. Rev. Lett. 2003, 90, 137003.
    (104) C. J. Palmstrøm, Prog. Cryst. Growth Charact. Mater. 2016, 62, 371-397.
    (105) K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev and A. L. Buchachenko, Spin polarization and magnetic effects in radical reactions 1984.
    (106) S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, ... and D. M. Treger, Science 2001, 294, 1488-1495.
    (107) P. J. Webster, Contemp. Phys. 1969, 10, 559-577.
    (108) S. Majumdar and S. van Dijken, J. Phys. D: Appl. Phys. 2013, 47, 034010.
    (109) R. Rosei, C. H. Culp and J. H. Weaver, Phys. Rev. B 1974, 10, 484-489.
    (110) F. X. Bronold, H. Fehske, and G. Röpke, J. Phys. Soc. Jpn. 2007, 76, 27-30.
    (111) H. Okushi, Y. Tokumaru, S. Yamasaki, H. Oheda, and K. Tanaka, Jpn. J. Appl. Phys. 1981, 20, L549-L552.
    (112) L. Van Hove, Phys. Rev. 1953, 89, 1189-1193.
    (113) T. Espinosa-Ortega, I. A. Luk’yanchuk, and Y. G. Rubo, Superlattice Microst. 2011, 49, 283-287.
    (114) Y. Xu, Z. Ning, H. Zhang, G. Ni, H. Shao, B. Peng, … and H. Zhu, RSC Adv. 2017, 7, 45705-45713.
    (115) R. S. Mulliken, J. Chem. Phys. 1955, 23, 1833-1840.
    (116) S. R. Nagel and J. Tauc, Phys. Rev. Lett. 1975, 35, 380-383.
    (117) K. Edagawa, Sci. Technol. Adv. Mater. 2014, 15, 034805.
    (118) D. J. Thouless, Phys. Rev. B 1983, 28, 4272-4276.
    (119) W. Kohn, Phys. Rev. 1959, 115, 809-821.
    (120) S. Sato, J. Chem. Phys. 1955, 23, 592-593.
    (121) A. D. Ioffe, SIAM J. Control Optim. 1979, 17, 266-288.
    (122) W. L. Price, Comput. J. 1977, 20, 367-370.
    (123) F. Brezzi, Publications mathématiques et informatique de Rennes 1974, S4, 1-26
    (124) H. B. Schlegel, J. Comput. Chem. 2003, 24, 1514-1527.
    (125) P. A. Schroeder, In CMS Workshop Lectures 2002, 11, 181-206.
    (126) J. O. Noell and K. Morokuma, Chem. Phys. Lett. 1975, 36, 465-469.
    (127) D. E. Woon and T. H. J. Dunning, J. Am. Chem. Soc. 1995, 117, 1090-1097.
    (128) B. Roux and T. Simonson, Biophys. Chem. 1999, 78, 1-20.
    (129) Y. Ding and K. Krogh‐Jespersen, J. Comput. Chem. 1996, 17, 338-349.
    (130) S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phys. 1981. 55, 117-129.
    (131) M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem. 2003, 24, 669-681.
    (132) J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian and M. J. Frisch, J. Phys. Chem. 1996, 100, 16098-16104.
    (133) A. Klamt and G. J. G. J. Schüürmann, J. Chem. Soc. Perkin Trans. 2 1993, 5, 799-805
    (134) A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
    (135) J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev. 2005, 105, 2999-3094.
    (136) D. Wertz, Chemistry-A Molecular Science. 2002, 222, 98.
    (137) M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, ... and T. R. Tuttle, J. Phys. Chem. A 1998, 102, 7787-7794.
    (138) C. F. Poole, S. N. Atapattu, S. K. Poole, and A. K. Bell, Anal. Chim. Acta 2009, 652, 32-53.
    (139) T. Abe, J. Phys. Chem. 1986, 90, 713-715.
    (140) S. Park, C. H. Kim, W. J. Lee, S. Sung, and M. H. Yoon, Mater. Sci. Eng. R Rep. 2017, 114, 1-22.
    (141) R. Rujiwarodom, N. Sunganun, W. Busayaporn, and A. Panyanuch, Agric. Nat. Resour. 2014, 48, 111-119.
    (142) G. T. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 2001, 22, 931-967.
    (143) E. van Lenthe, A. Ehlers, and E. J. Baerends, J. Chem. Phys. 1999, 110, 8943-8953.
    (144) M. Lax, J. Chem. Phys. 1952, 20, 1752-1760.
    (145) M. Kasha, Discuss. Faraday Soc. 1950, 9, 14-19.
    (146) K. Schmidt, S. Brovelli, V. Coropceanu, D. Beljonne, J. Cornil, C. Bazzini, ... and J. L. Bredas, J. Phys. Chem. A 2007, 111, 10490-10499.
    (147) V. Lawetz, G. Orlandi, and W. Siebrand, J. Chem. Phys. 1972, 56, 4058-4072.
    (148) T. Azumi, and H. Miki, In Electronic and Vibronic Spectra of Transition Metal Complexes II 1997, (pp. 1-40). Springer, Berlin, Heidelberg.
    (149) E. Y. T., Li, T. Y. Jiang, Y. Chi, and P. T. Chou, Phys. Chem. Chem. Phys. 2014, 16, 26184-26192.

    Chapter 3
    (1) (A) Y. Ma, H. Zhang, J. Shen and C. Che, Synth. Met. 1998, 94, 245-248; (B) M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 1998, 395, 151-154; (C) C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys. 2001, 90, 5048-5051; (D) B. Minaev, G. Baryshnikov and H. Agren, Phys. Chem. Chem. Phys. 2014, 16, 1719-1758.
    (2) (A) Y. Han, Y. You, Y.-M. Lee and W. Nam, Adv. Mater. 2012, 24, 2748-2754; (B) Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam and S. J. Lippard, J. Am. Chem. Soc. 2011, 133, 11488-11491; (C) Y. You, S. Lee, T. Kim, K. Ohkubo, W.-S. Chae, S. Fukuzumi, G.-J. Jhon, W. Nam and S. J. Lippard, J. Am. Chem. Soc. 2011, 133, 18328-18342 (D) Q. Zhao, F. Li and C. Huang, Chem. Soc. Rev. 2010, 39, 3007-3030.
    (3) (A) L. Xiong, Q. Zhao, H. Chen, Y. Wu, Z. Dong, Z. Zhou and F. Li, Inorg. Chem. 2010, 49, 6402-6408; (B) Q. Zhao, M. Yu, L. Shi, S. Liu, C. Li, M. Shi, Z. Zhou, C. Huang and F. Li, Organometallics 2010, 29, 1085-1091; (C) G. Zhang, G. M. Palmer, M. W. Dewhirst and C. L. Fraser, Nat. Mater. 2009, 8, 747-751; (D) R. I. Dmitriev, A. V. Kondrashina, K. Koren, I. Klimant, A. V. Zhdanov, J. M. P. Pakan, K. W. McDermott and D. B. Papkovsky, Biomater. Sci. 2014, 2, 853-866.
    (4) (A) W.-Y. Wong and C.-L. Ho, Acc. Chem. Res. 2010, 43, 1246-1256; (B) C.-L. Lee, I.-W. Hwang, C. C. Byeon, B. H. Kim and N. C. Greenham, Adv. Funct. Mater. 2010, 20, 2945-2950; (C) W. A. Luhman and R. J. Holmes, Appl. Phys. Lett. 2009, 94, 153304.
    (5) (A) J. Xu, A. Takai, Y. Kobayashi and M. Takeuchi, Chem. Commun. 2013, 49, 8447-8449; (B) Y. Deng, D. Zhao, X. Chen, F. Wang, H. Song and D. Shen, Chem. Commun. 2013, 49, 5751-5753 (C) S. Mukherjee and P. Thilagar, Chem. Commun. 2015, 51, 10988-11003.
    (6) (A) P. Xue, P. Wang, P. Chen, J. Ding and R. Lu, RSC Adv. 2016, 6, 51683-51686; (B) D. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama and J. Kim, J. Am. Chem. Soc. 2013, 135, 6325-6329; (C) O. Bolton, K. Lee, H.-J. Kim, K. Y. Lin and J. Kim, Nat. Chem. 2011, 3, 205-510; (D) S. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T. Watanabe and C. Adachi, Adv. Funct. Mater. 2013, 23, 3386-3397; (E) S. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T. Watanabe and C. Adachi, Adv. Funct. Mater. 2013, 23, 3386-3397; (F) W. Z. Yuan, X. Y. Shen, H. Zhao, J. W. Y. Lam, L. Tang, P. Lu, C. Wang, Y. Liu, Z. Wang, Q. Zheng, J. Z. Sun, Y. Ma and B. Z. Tang, J. Phys. Chem. C 2010, 114, 6090-6099; (G) P. Xue, P. Wang, P. Chen, B. Yao, P. Gong, J. Sun, Z. Zhang and R. Lu, Chem. Sci. 2016, DOI: 10. 1039/C5SC03739E.
    (7) O. Hassel, Science 1970, 170, 497-502.
    (8) L. Li, M. Degardin, T. Lavergne, D. A. Malyshev, K. Dhami, P. Ordoukhanian and F. E. Romesberg, J. Am. Chem. Soc. 2014, 136, 826-829.
    (9) G. M. Buckley, N. Cooper, R. J. Davenport, H. J. Dyke, F. P. Galleway, L. Gowers, A. F. Haughan, H. J. Kendall, C. Lowe, J. G. Montana, J. Oxford, J. C. Peake, C. L. Picken, M. D. Richard, V. Sabin, A. Sharpe and J. B. H. Warneck, Bioorg. Med. Chem. Lett. 2002, 12, 509-512.
    (10) T.-T. Huang and E. Y. Li, Org. Electron. 2016, 39, 311-317.
    (11) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1; Gaussian, Inc, Wallingford, CT, 2009.
    (12) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, J. Comput. Chem. 2001, 22, 931-967.
    (13) C. Fonseca Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391-403.
    (14) E. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. Bickelhaupt, C. Bo, P. Boerrigter, L. Cavallo and D. Chong, “ADF2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.”, 2014.
    (15) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
    (16) E. Van Lenthe and E. J. Baerends, J. Comput. Chem. 2003, 24, 1142-1156.
    (17) J. Tomasi and M. Persico, Chem. Rev. 1994, 94, 2027-2094.
    (18) R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218-8224.
    (19) M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys. 1998, 108, 4439-4449.
    (20) C. Jamorski, M. E. Casida and D. R. Salahub, J. Chem. Phys. 1996, 104, 5134-5147.
    (21) M. Petersilka, U. Gossmann and E. Gross, Phys. Rev. Lett. 1996, 76, 1212-1215.
    (22) R. Bauernschmitt, R. Ahlrichs, F. H. Hennrich and M. M. Kappes, J. Am. Chem. Soc. 1998, 120, 5052-5059.
    (23) F. Wang and T. Ziegler, J. Chem. Phys. 2005, 123, 154102.
    (24) E. van Lenthe, A. Ehlers and E.-J. Baerends, J. Chem. Phys. 1999, 110, 8943-8953.
    (25) S. G. Chiodo and M. Leopoldini, Comput. Phys. Commun. 2014, 185, 676-683.
    (26) S. Chiodo and N. Russo, J. Comput. Chem. 2008, 29, 912-920.
    (27) S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 1999, 314, 291-299.
    (28) H. A. Bethe and E. E. Salpeter, Quantum mechanics of one-and two-electron atoms 2012, Springer Science & Business Media.
    (29) D. Jacquemin, V. Wathelet, E. A. Perpete and C. Adamo, J. Chem. Theor. Comput. 2009, 5, 2420-2435.
    (30) C. M. Marian, Spin–orbit coupling and intersystem crossing in molecules. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 187-203.
    (31) S. Fraga, J. Karwowski and K. M. S. Saxena, Handbook of atomic data, 1976.

    Chapter 4
    (1) M. J. Copley, C. S. Marvel and E. Ginsberg, J. Am. Chem. Soc. 1939, 61, 3161-3162.
    (2) W. Gordy and S. C. Stanford, J. Am. Chem. Soc. 1940, 62, 497-505.
    (3) T. G. Heafield, G. Hopkins and L. Hunter, Nature 1942, 149, 218-218.
    (4) L. Gonzalez, O. Mo and M. Yanez, J. Phys. Chem. A 1997, 101, 9710-9719.
    (5) M. Jablonski, A. Kaczmarek and A. J. Sadlej, J. Phys. Chem. A 2006, 110, 10890-10898.
    (6) A. Nowroozi, H. Roohi, H. Hajiabadi, H. Raissi, E. Khalilinia and M. N. Birgan, Comput. Theor. Chem. 2011, 963, 517-524.
    (7) Y. Posokhov, A. Gorski, J. Spanget-Larsen, F. Duus, P. E. Hansen and J. Waluk, Chem. Phys. Lett. 2001, 350, 502-508.
    (8) H. S. Biswal and S. Wategaonkar, J. Phys. Chem. A 2009, 113, 12763-12773.
    (9) J. Sponer, P. Jurecka and P. Hobza, J. Am. Chem. Soc. 2004, 126, 10142-10151.
    (10) A. Villalobos, J. E. Ness, C. Gustafsson, J. Minshull and S. Govindarajan, BMC Bioinf. 2006, 7, 285
    (11) D. Kumar, C. Gustafsson and D. F. Klessig, Plant J. 2006, 45, 863-868.
    (12) C. Gustafsson, S. Govindarajan and J. Minshull, Curr. Opin. Biotechnol. 2003, 14, 366-370.
    (13) Y. Yanagisawa, Y. L. Nan and K. Okuro, T. Aida, Science 2018, 359, 72-76.
    (14) H. S. Biswal and S. Wategaonkar, J. Phys. Chem. A 2009, 113, 12774-12782.
    (15) M. Saggu and N. M. Levinson, S. G. Boxer, J. Am. Chem. Soc. 2011, 133, 17414-17419.
    (16) M. Saggu, N. M. Levinson and S. G. Boxer, J. Am. Chem. Soc. 2012, 134, 18986-18997.
    (17) A. E. Shchavlev, A. N. Pankratov and A. V. Shalabay, J. Phys. Chem. A 2005, 109, 4137-4148.
    (18) L. Gonzalez, O. Mo, and M. Yanez, J. Org. Chem. 1999, 64, 2314-2321.
    (19) T. Schaefer, S. R. Salman, T. A. Wildman and P. D. Clark, Can. J. Chem. 1982, 60, 342-348.
    (20) H. H. Szmant and J. J. Rigau, J. Org. Chem. 1966, 31, 2288-2290.
    (21) V. R. Mundlapati, S. Gautam, D. K. Sahoo, A. Ghosh and H. S. Biswal, J. Phys. Chem. Lett. 2017, 8, 4573-4579.
    (22) U. Adhikari and S. Scheiner, Chemphyschem 2012, 13, 3535-3541.
    (23) E. A. Meyer, R. K. Castellano and F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1210-1250.
    (24) L. M. Salonen, M. Ellermann and F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808-4842.
    (25) T. Steiner and G. Koellner, J. Mol. Biol. 2001, 305, 535-557.
    (26) P. F. Barbara, L. E. Brus and P. M. Rentzepis, J. Am. Chem. Soc. 1980, 102, 5631-5635.
    (27) H. Beens, Kh Grellman. M. Gurr and A. H. Weller, Discuss. Faraday Soc. 1965, 39, 183-193.
    (28) D. Mcmorrow and M. Kasha, J. Phys. Chem. 1984, 88, 2235-2243.
    (29) D. L. Williams and A. Heller, J. Phys. Chem. 1970, 74, 4473-4480.
    (30) W. C. Lin, S. K. Fang, J. W. Hu, H. Y. Tsai and K. Y. Chen, Anal. Chem. 2014, 86, 4648-4652.
    (31) Y. Q. Xu and Y. Pang, Dalton Trans. 2011, 40, 1503-1509.
    (32) L.Yu, Y. Y. Li, H. Yu, K. Zhang, X. W. Wang, X. F. Chen, J. Yue, T. X. Huo, H. W. Ge, K. A. Alamry, H. M. Marwani and S. H. Wang, Sens. Actuat. B 2018, 266, 717-723.
    (33) D. Maity, V. Kumar and T. Govindaraju, Org. Lett. 2012, 14, 6008-6011.
    (34) A. Sytnik, D. Gormin and M. Kasha, Proc. Natl. Acad. Sci.U. S. A. 1994, 91, 11968-11972.
    (35) A. Sytnik and M. Kasha, Natl. Acad. Sci. U. S. A. 1994, 91, 10757-10757.
    (36) K. Y. Chen, C. C. Hsieh, Y. M. Cheng, C. H. Lai and P. T. Chou, Chem. Commun. 2006, 4395-4397.
    (37) Y. H. Hsu, Y. A. Chen, H. W. Tseng, Z. Y. Zhang, J. Y. Shen, W. T. Chuang, T. C. Lin, C. S. Lee, W. Y. Hung, B. C. Hong, S. H. Liu and P. T. Chou, J. Am. Chem. Soc. 2014, 136, 11805-11812.
    (38) S. Park, O. H. Kwon, S. Kim, S. Park, M. G. Choi, M. Cha, S. Y. Park and D. J. Jang, J. Am. Chem. Soc. 2005, 127, 10070-10074.
    (39) M. Mamada, K. Inada, T. Komino, W. J. Potscavage, H. Nakanotani and C. Adachi, ACS Cent. Sci. 2017, 3, 769-777.
    (40) S. Park, J. Seo, S. H. Kim and S. Y. Park, Adv. Funct. Mater. 2008, 18, 726-731.
    (41) K. C. Tang, M. J. Chang, T. Y. Lin, H. A. T. C. Pan, Fang, K. Y. Chen, W. Y. Hung, Y. H. Hsu and P. T. Chou, J. Am. Chem. Soc. 2011, 133, 17738-17745.
    (42) R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys. 1998, 109, 8218-8224.
    (43) M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys. 1998, 108, 4439-4449.
    (44) C. Jamorski, M. E. Casida and D. R. Salahub, J. Chem. Phys. 1996, 104, 5134-5147.
    (45) M. Petersilka, U. Gossmann and E. Gross, Phys. Rev. Lett. 1996, 76, 1212.
    (46) R. Bauernschmitt, R. Ahlrichs, F. H. Hennrich and M. M. Kappes, J. Am. Chem. Soc.1998, 120, 5052-5059.
    (47) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
    (48) P. J. Stephens, J. F. Devlin, C. F. Chabalowski and M. J. Frisch, J. Chem. Phys. 1993, 98, 11623-11627.
    (49) M. J. Frisch, J. A. Pople and J. S. Binkley. J. Chem. Phys. 1984, 80, 3265-3269.
    (50) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, ... and X. Li, Gaussian 16, revision A. 03. Gaussian Inc., Wallingford CT. 2016.
    (51) J. Tomasi and M. Persico, Chem. Rev. 1994, 94, 2027-2094.
    (52) S. G. Chiodo and M. Leopoldini, Comput. Phys. Commun. 2014, 185, 676-683.
    (53) S. Chiodo and N. Russo, J. Comput. Chem. 2008, 29, 912-920.
    (54) S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 1999, 314, 291-299.
    (55) H. A. Bethe and E. E. Salpeter, Quantum mechanics of one-and two-electron atoms, 2012, Springer Science & Business Media.
    (56) D. Jacquemin, V. Wathelet, E. A. Perpete and C. Adamo, J. Chem. Theory Comput. 2009, 5, 2420-2435.
    (57) K. A. Rufanov, A. S. Stepanov, D. A. Lemenovskii and A. V. Churakov, Heteroat. Chem. 1999, 10, 369-371.
    (58) R. C. Evans, P. Douglas and C. J. Winscom, J. Fluoresc. 2009, 19, 169-177.
    (59) A. Maciejewski and R. P. Steer, Chem. Rev. 1993, 93, 67-98.
    (60) R. P. Steer and V. Ramamurthy, Acc. Chem. Res. 1988, 21, 380-386.
    (61) A. Maciejewski, M. Szymanski and R. P. Steer, Chem. Phys. Lett. 1988, 143, 559-564.
    (62) R. Englman and J. Jortner, Mol. Phys. 1970, 18, 145-164.
    (63) A. P. Demchenko, V. I. Tomin and P. T. Chou, Chem. Rev. 2017, 117, 13353-13381.
    (64) P. C. Wu, J. K. Yu, Y. H. Song, Y. Chi, P. T. Chou, S. M. Peng and G. H. Lee, Organometallics 2003, 22, 4938-4946.
    (65) R. Borrego-Varillas, D. C. Teles-Ferreira, A. Nenov, I. Conti, L. Ganzer, C. Manzoni, M. Garavelli, A. M. de Paula and G. Cerullo, J. Am. Chem. Soc. 2018, 140, 16087-16093.
    (66) M. Pollum, S. Jockusch and C. E. Crespo-Hernandez, Phys. Chem. Chem. Phys. 2015, 17, 27851-27861.
    (67) P. Karran and N. Attard, Nat. Rev. Cancer 2008, 8, 24-36.

    Chapter 5
    (1) M. C. Hanna, and A. J. Nozik, J. Appl. Phys. 2006, 100, 074510.
    (2) S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider, J. Chem. Phys. 1965, 42, 330-342.
    (3) A. J. Nozik, R. J. Ellingson, O. I. Mićić, J. L. Blackburn, P. Yu, J. E. Murphy, and G. Rumbles, In Proceedings of the 27th DOE Solar Photochemistry Research Conference 2004, 6-9.
    (4) J. J. Burdett, A. M. Müller, D. Gosztola, and C. J. Bardeen, J. Cheml Phys. 2010, 133, 144506.
    (5) J. Lee, P. Jadhav, and M. A. Baldo, Appl. phys. Lett. 2009, 95, 033301.
    (6) A. Rao, M. W. Wilson, J. M. Hodgkiss, S. Albert-Seifried, H. Bassler, and R. H. Friend, J. Am. Chem. Soc. 2010, 132, 12698-12703.
    (7) J. C. Johnson, A. J. Nozik, and J. Michl, J. Am. Chem. Soc. 2010, 132, 16302-16303.
    (8) C. Wang, and M. J. Tauber, J. Am. Chem. Soc. 2010, 132, 13988-13991.
    (9) L. Wang, Y. Olivier, O. V. Prezhdo, and D. Beljonne, J. Phys. Chem. Lett. 2014, 5, 3345-3353.
    (10) Y. J. Bae, G. Kang, C. D. Malliakas, J. N. Nelson, J. Zhou, R. M. Young, ... and M. R. Wasielewski, J. Am. Chem. Soc. 2018, 140, 15140-15144.
    (11) B. Manna, A. Nandi, and R. Ghosh, J. Phys. Chem. C 2018, 122, 21047-21055.
    (12) A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. Wilson, A. W. Chin, D. igmantas, ... and A. Rao, Nat. Chem. 2016, 8, 16-23.
    (13) A. J. Musser, M. Liebel, C. Schnedermann, T. Wende, T. B. Kehoe, A. Rao, and P. Kukura, Nat. Phys. 2015, 11, 352-357.
    (14) J. Zirzlmeier, D. Lehnherr, P. B. Coto, E. T. Chernick, R. Casillas, B. S. Basel, ... and D. M. Guldi, Proc. Natl. Acad. Sci. 2015, 112, 5325-5330.
    (15) S. R. Reddy, P. B. Coto, and M. Thoss, J. Phys. Chem. Lett. 2018, 9, 5979-5986.
    (16) D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, ... and M. A. Baldo, Science 2013, 340, 334-337.
    (17) B. S. Basel, J. Zirzlmeier, C. Hetzer, B. T. Phelan, M. D. Krzyaniak, S. R. Reddy, ... and F. Hampel, Nat. Commun. 2017, 8, 1-8.
    (18) B. S. Basel, J. Zirzlmeier, C. Hetzer, S. R. Reddy, B. T. Phelan, M. D. Krzyaniak, ... and M. Thoss, Chem. 2018, 4, 1092-1111.
    (19) H. Liu, R. Wang, L. Shen, Y. Xu, M. Xiao, C. Zhang, and X. Li, Org. Lett. 2017, 19, 580-583.
    (20) H. Liu, Z. Wang, X. Wang, L. Shen, C. Zhang, M. Xiao, and X. Li, J. Mater. Chem. C 2018, 6, 3245-3253.
    (21) L. M. Yablon, S. N. Sanders, H. Li, K. R. Parenti, E. Kumarasamy, K. J. Fallon, ... and L. M. Campos, J. Am. Chem. Soc. 2019, 141, 9564-9569.
    (22) A. B. Pun, S. N. Sanders, E. Kumarasamy, M. Y. Sfeir, D. N. Congreve, and L. M. Campos, Adv. Mater. 2017, 29, 1701416.
    (23) E. Tenori, A. Colusso, Z. Syrgiannis, A. Bonasera, S. Osella, A. Ostric, ... and M. Prato, ACS Appl. Mater. Interfaces 2015, 7, 28042-28048.
    (24) R. Wang, G. Li, Y. Zhou, P. Hao, Q. Shang, S. Wang, ... and Z. Shi, Asian J. Org. Chem. 2018, 7, 702-706.
    (25) G. Li, Y. Zhao, J. Li, J. Cao, J. Zhu, X. W. Sun, and Q. Zhang, J. Org. Chem. 2015, 80, 196-203.
    (26) T. Mukhopadhyay, A. J. Musser, B. Puttaraju, J. Dhar, R. Friend, and S. Patil, Is the Chemical Strategy for imbuing ‘Polyene’. 2017.
    (27) C. M. Mauck, P. E. Hartnett, Y. L. Wu, C. E. Miller, T. J. Marks, and M. R. Wasielewski, Chem. Mater. 2017, 29, 6810-6817.
    (28) C. M. Mauck, Y. J. Bae, M. Chen, N. Powers‐Riggs, Y. L. Wu, and M. R. Wasielewski, ChemPhotoChem 2018, 2, 223-233.
    (29) I. B. Klenina, Z. K. Makhneva, A. A. Moskalenko, A. N. Kuzmin, and I. I. Proskuryakov, Biophysics 2013, 58, 43-50.
    (30) I. B. Klenina, Z. K. Makhneva, A. A. Moskalenko, N. D. Gudkov, M. A. Bolshakov, E. A. Pavlova, and I. I. Proskuryakov, Biochemistry 2014, 79, 235-241.
    (31) D. M. Niedzwiedzki, D. J. Swainsbury, E. C. Martin, C. N. Hunter, and R. E. Blankenship, J. Phys. Chem. B 2017, 121, 7571-7585.
    (32) M. Nakano, Chem. Rec. 2017, 17, 27-62.
    (33) M. Abe, Chem. Rev. 2013, 113, 7011-7088.
    (34) T. Stuyver, B. Chen, T. Zeng, P. Geerlings, F. De Proft, and R. Hoffmann, Chem. Rev. 2019, 119, 11291-11351.
    (35) M. B. Smith, and J. Michl, Ann. Rev. Phys. Chem. 2013, 64, 361-386.
    (36) G. Klein, R. Voltz, and M. Schott, Chem. Phys. Lett. 1972, 16, 340-344.
    (37) G. Klein, R. Voltz, and M. Schott, Chem. Phys. Lett. 1973, 19, 391-394.
    (38) N. Geacintov, M. Pope, and F. Vogel, Phys. Rev. Lett. 1969, 22, 593.
    (39) N. E. Geacintov, M. Pope, and S. Fox, J. Phys. Chem. Solids 1970, 31, 1375-1379.
    (40) J. J. Burdett, D. Gosztola, and C. J. Bardeen, J. Chem. Phys. 2011, 135, 214508.
    (41) S. Arnold, and W. B. Whitten, J. Chem. Phys. 1981, 75, 1166–1169
    (42) W. L. Chan, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-Avila, and X. Y. Zhu, Science 2011, 334, 1541-1545.
    (43) H. Marciniak, M. Fiebig, M. Huth, S. Schiefer, B. Nickel, F. Selmaier, and S. Lochbrunner, Phys. Rev. Lett. 2007, 99, 176402.
    (44) H. Marciniak, I. Pugliesi, B. Nickel, and S. Lochbrunner, Phys. Rev. B 2009, 79, 235318.
    (45) V. K. Thorsmølle, R. D. Averitt, J. Demsar, D. L. Smith, S. Tretiak, R. L. Martin, ... and A. J. Taylor, Phys. Rev. Lett. 2009, 102, 017401.
    (46) H. C. Wolf, In Solid state physics 1959, 9, 1-81.
    (47) P. Avakian, E. Abramson, R. G. Kepler, and J. C. Caris, J. Chem. Phys. 1963, 39, 1127-1128.
    (48) Y. Tomkiewicz, R. P. Groff, and P. Avakian, J. Chem. Phys. 1971, 54, 4504-4507
    (49) L. Sebastian, G. Weiser, and H. Bässler, Chem. Phys. 1981, 61, 125-135.
    (50) C. C. Gradinaru, J. T. Kennis, E. Papagiannakis, I. H. Van Stokkum, , R. J. Cogdell, G. R. Fleming, Niederman R. A. and R. Van Grondelle, Proc. Natl. Acad. Sci. 2001, 98, 2364-2369.
    (51) C. Wang, M. Angelella, C. H. Kuo, and M. J. Tauber, Phys. Chem. Interfaces Nanomater. XI 2012, 8459, 845905.
    (52) W. Ni, G. G. Gurzadyan, J. Zhao, Y. Che, X. Li, and L. Sun, J. Phys. Chem. Lett. 2019, 10, 2428-2433.
    (53) M. Kasha, Discuss. Faraday Soc. 1950, 9, 14-19.
    (54) R. C. Evans, P. Douglas, and C. J. Winscom, J. Fluoresc. 2009, 19, 169-177.
    (55) A. Maciejewski, and R. P. Steer, Chem. Rev. 1993, 93, 67-98.
    (56) R. P. Steer, and V. Ramamurthy, Acc. Chem. Res. 1988, 21, 380-386.
    (57) Z. Y. Liu, J. W. Hu, C. H. Huang, T. H. Huang, D. G. Chen, S. Y. Ho, K. Y. Chen, E. Y. Li and P. T. Chou, J. Am. Chem. Soc. 2019, 141, 9885-9894.
    (58) R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys. 1998, 109, 8218-8224.
    (59) M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys. 1998, 108, 4439-4449.
    (60) C. Jamorski, M. E. Casida and D. R. Salahub, J. Chem. Phys. 1996, 104, 5134-5147.
    (61) M. Petersilka, U. Gossmann and E. Gross, Phys. Rev. Lett. 1996, 76, 1212.
    (62) R. Bauernschmitt, R. Ahlrichs, F. H. Hennrich and M. M. Kappes, J. Am. Chem. Soc.1998, 120, 5052-5059.
    (63) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
    (64) P. J. Stephens, J. F. Devlin, C. F. Chabalowski and M. J. Frisch, J. Chem. Phys. 1993, 98, 11623-11627.
    (65) M. J. Frisch, J. A. Pople and J. S. Binkley. J. Chem. Phys. 1984, 80, 3265-3269.
    (66) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, ... and X. Li, Gaussian 16, revision A. 03. Gaussian Inc., Wallingford CT. 2016.
    (67) J. Tomasi and M. Persico, Chem. Rev. 1994, 94, 2027-2094.
    (68) J. Jullien, J. M. Pechine, F. Perez, and J. J. Piade, Tetrahedron 1982, 38, 1413-1416.
    (69) A. Machara, and J. Svoboda, Chem. Pap. 2013, 67, 59-65.
    (70) M. Tuan Trinh, A. Pinkard, A. B. Pun, S. N. Sanders, E. Kumarasamy, M. Y. Sfeir, L. M. Campos, X. Roy and X. Y. Zhu, Sci. Adv. 2017, 3, e1700241
    (71) S. N. Sanders, E. Kumarasamy, A. B. Pun, M. L. Steigerwald, M. Y. Sfeir, and L. M. Campos, Chem. 2016, 1, 505-511.
    (72) K. Aryanpour, T. Dutta, U. N. Huynh, Z. V. Vardeny, and S. Mazumdar, Phys. Rev. Lett. 2015, 115, 267401.
    (73) R. Casillas, I. Papadopoulos, T. Ullrich, D. Thiel, A. Kunzmann, and D. M. Guldi, Energy Environ. Sci. 2020, 13, 2741-2804

    Chapter 6
    (1) Y. Nishi, Chem. Rec. 2001, 1, 406-413.
    (2) C. K. Chan, H. Peng, G. A. O. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. I. Cui, Nat. Nanotechnol, 2008, 3, 31-35.
    (3) H. Li, Z. Wang, L. Chen and X. Huang, Adv Mater. 2009, 21, 4593-4607.
    (4) M.-H. Park, Y. Cho, K. Kim, J. Kim, M. Liu and J. Cho, Angew. Chem. Int. Ed. 2011, 50, 9647-9650.
    (5) N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater. Today 2015, 18, 252-264.
    (6) M. Noel and V. Suryanarayanan, J. Power Sources 2002, 111, 193-209.
    (7) J. M. Tarascon and M. Armand, Nature 2001, 414, 359-367.
    (8) X. Huang, Z. Zeng and H. Zhang, Chem. Soc. Rev. 2013, 42, 1934-1946.
    (9) M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and H. Zhang, Nat. Chem. 2013, 5, 263-275.
    (10) X. Xu, W. Liu, Y. Kim and J. Cho, Nano Today 2014, 9, 604-630.
    (11) L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang and G. Schmidt, Oliver, Adv. Mater. 2012, 25, 1180-1184.
    (12) M. Liu, Y. X. Ren, H. R. Jiang, C. Luo, F. Y. Kang and T. S. Zhao, Nano Energy 2017, 40, 240-247.
    (13) Z. Wang, L. Zhou and W. Lou Xiong, Adv. Mater. 2012, 24, 1903-1911.
    (14) J. B. Goodenough and Y. Kim, Chem. Mater. 2010, 22, 587-603.
    (15) S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria and C. Capiglia, J. Power Sources 2014, 257, 421-443.
    (16) A. Urban, D.-H. Seo and G. Ceder, Npj Comput. Mater. 2016, 2, 16002.
    (17) S. P. Ong, A. Jain, G. Hautier, B. Kang and G. Ceder, Electrochem. Commun. 2010, 12, 427-430.
    (18) Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun and C. Chen, J. Power Sources 2012, 208, 210-224.
    (19) Y. Gu, Y. Xu and Y. Wang, ACS Appl. Mater. Interfaces 2013, 5, 801-806.
    (20) J. Li, B. Liu, M. Li, Q. Zhou, Q. Chen, C. Guo and L. Zhang, Eur. J. Inorg. Chem. 2018, 26, 3036-3040.
    (21) P. Xue, N. Wang, Y. Wang, Y. Zhang, Y. Liu, B. Tang, Z. Bai and S. Dou, Carbon 2018, 134, 222-231.
    (22) P. Wang, Y. Zhang, B. Guan, L. Fan, N. Zhang and K. Sun, Ceram. Inter. 2018, 44, 11905-11909.
    (23) J. Huang, D. Liu, C. Gu and J. Liu, Mater. Res. Lett. 2018, 6, 307-313.
    (24) R. Malini, U. Uma, T. Sheela, M. Ganesan and N. G. Renganathan, Ionics 2009, 15, 301-307.
    (25) Z. X. Huang, Y. Wang, B. Liu, D. Kong, J. Zhang, T. Chen and H. Y. Yang, Sci. Rep. 2017, 7, 41015.
    (26) S. Liu, J. Wang, J. Wang, F. Zhang, F. Liang and L. Wang, CrystEngComm 2014, 16, 814-819.
    (27) K. S. Kumar, W. Li, M. Choi, S. M. Kim and J. Kim, Chem. Eng. J. 2016, 285, 517-527.
    (28) C. Gu, W. Guan, Y. Cui, Y. Chen, L. Gao and J. Huang, J. Mater. Chem. A 2016, 4, 17000-17008.
    (29) X.-Y. Yu, L. Yu and W. Lou Xiong, Adv. Energy Mater. 2015, 6, 1501333.
    (30) L. Yu, F. Yang Jing and W. Lou Xiong, Angew. Chem. Inter. Ed. 2016, 55, 13422-13426.
    (31) C. Wu, J. Maier and Y. Yu, Adv. Mater. 2015, 28, 174-180.
    (32) H. Zhi Xiang, W. Ye, W. Jen It and Y. Hui Ying, 2D Mater. 2015, 2, 024010.
    (33) C.-H. Lai, M.-Y. Lu and L.-J. Chen, J. Mater. Chem. 2012, 22, 19-30.
    (34) L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang, Energy Environ. Sci. 2011, 4, 2682-2699.
    (35) G. L. Holleck and J. R. Driscoll, Electrochim. Acta 1977, 22, 647-655.
    (36) M. S. Whittingham, Chem. Rev. 2004, 104, 4271-4302.
    (37) B. Kartick, S. K. Srivastava and S. Mahanty, J. Nanoparticle Res. 2013, 15, 1950.
    (38) A. H. Thompson, Phys. Rev. Lett. 1975, 35, 1786-1789.
    (39) Justin M. Whiteley, S. Hafner, S. S. Han, S. C. Kim, V.-D. Le, C. Ban, Y. H. Kim, K. H. Oh and S.-H. Lee, J. Mater. Chem. A 2017, 5, 15661-15668.
    (40) S. N. Li, J. B. Liu and B. X. Liu, J. Power Sources 2016, 320, 322-331.
    (41) S. Jeong, D. Yoo, M. Ahn, P. Miró, T. Heine and J. Cheon, Nat. Commun. 2015, 6, 5763.
    (42) R. A. L. Morasse, T. Li, Z. J. Baum and J. E. Goldberger, Chem. Mater. 2014, 26, 4776-4780.
    (43) A. K. Geim and I. V. Grigorieva, Nature 2013, 499, 419-425.
    (44) Y.-H. Liu, S. H. Porter and J. E. Goldberger, J. Am. Chem. Soc. 2012, 134, 5044-5047.
    (45) T. Li, Y.-H. Liu, B. Chitara and J. E. Goldberger, J. Am. Chem. Soc. 2014, 136, 2986-2989.
    (46) G. Paolo, B. Stefano, B. Nicola, C. Matteo, C. Roberto, C. Carlo, C. Davide, L. C. Guido, C. Matteo, D. Ismaila, C. Andrea Dal, G. Stefano de, F. Stefano, F. Guido, G. Ralph, G. Uwe, G. Christos, K. Anton, L. Michele, M.-S. Layla, M. Nicola, M. Francesco, M. Riccardo, P. Stefano, P. Alfredo, P. Lorenzo, S. Carlo, S. Sandro, S. Gabriele, P. S. Ari, S. Alexander, U. Paolo and M. W. Renata, J. Phys. Condens. Matter 2009, 21, 395502.
    (47) K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist and D.C. Langreth, Phys. Rev. B 1990, 41, 7892-7895.
    (48) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892-7895.
    (49) M. S. Islam and C. A. J. Fisher, Chem. Soc. Rev. 2014, 43, 185-204.
    (50) G. Henkelman, B. Uberuaga and H. Jonsson, J. Chem. Phys. 2000, 113, 9901-9904.
    (51) V. A. Dusheiko and M. S. Lipkin, J. Power Sources 1995, 54, 264-267.
    (52) G. R. Williams, A. M. Fogg, J. Sloan, C. Taviot-Guého and D. O'Hare, Dalton Trans. 2007, 32, 3499-3506.
    (53) A. Van der Ven, M. K. Aydinol, G. Ceder, G. Kresse and J. Hafner, Phys. Rev. B 1998, 58, 2975-2987.
    (54) H. Gabrisch, R. Yazami and B. Fultz, Electrochem. Solid State Lett. 2002. 5, A111-A114.
    (55) P. Simon, Y. Gogotsi and B. Dunn, Science 2014. 343(6176), 1210-1211.
    (56) W. van Schalkwijk and B. Scrosati, Advances in lithium-ion batteries, 2002, Springer Science & Business Media.
    (57) S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma and G. Ceder, Energy Environ. Sci. 2011, 4, 3680-3688.

    下載圖示
    QR CODE