簡易檢索 / 詳目顯示

研究生: 潘致容
Chih-Jung Pan
論文名稱: 奈米二氧化鈦溶液摻雜硝酸鋰進行在可見光下光觸媒降解汙染物之研究
Study on photocatalytic degradation of pollutants under visible lighting by using TiO2/water nanofluid doped with LiNO3
指導教授: 鄧敦建
Teng, Tun-Chien
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 68
中文關鍵詞: 光觸媒二氧化鈦甲基藍甲醛
英文關鍵詞: photocatalyst, TiO2, methylene blue, formaldehyde
論文種類: 學術論文
相關次數: 點閱:464下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用電泳沉積法(EPD)製備二氧化鈦(TiO2)鍍膜於不銹鋼基材上,並使用硝酸鋰(LiNO3)進行TiO2改質達到可見光降解污染物的目的。首先以二階合成法(two-step synthesis)製備TiO2/water奈米流體,並添加藻酸鹽(alginates)做為分散劑以提升奈米流體的懸浮性能與減少水電解時的氣泡問題。調配好的奈米流體進行相關特性檢測以及甲基藍(MB)光催化降解實驗。接著使用定電流電泳沈積法搭配不鏽鋼基材為電極,將TiO2沈積於正極之上形成TiO2鍍膜的試片。完成的試片使用光學顯微鏡(OM)與掃瞄式電子顯微鏡(SEM)檢視鍍膜試片表面的均勻度與裂痕來篩選出電泳沉積製程的最佳參數。最後將選定的試片放入氣體污染物測試箱之中,以380-385 nm、427-432 nm、460-465 nm的LED燈板照光之下進行九小時的甲醛(formaldehyde)光催化降解性能實驗。
    研究結果顯示奈米流體摻雜硝酸鋰改質後其特性會出現改變。在MB實驗中可得知以LiNO3濃度在0.02M 對MB光降解效果最佳,降解率達34%。在電泳沉積製程中發現未改質、浸泡硝酸鋰改質與共沈積硝酸鋰改質的最佳製程參數分別為7mA/9min、7mA/9min和5mA/10min。最佳三種製程參數的試片進行甲醛降解實驗發現照光波長確實會影響各試片的光催化性能。摻雜LiNO3的試片在照光波長427-432 nm的降解甲醛效果最好,且兩種添加LiNO3的方式均有明顯的效果。結果顯示光觸媒摻雜LiNO3後能達到可見光光催化且最佳光催化性能的照光波長應在427-432 nm之間。

    In this study, a method is proposed that using electrophoretic deposition (EPD) to fabricate the titania (TiO2) photocatalyst on stainless steel substrate, and successfully modifying TiO2 photocatalyst by lithium nitrate (LiNO3) to be visible light-responsive to effectively degrade contaminants. Firstly, the two-step synthesis method was used to produce TiO2/water nanofluid with alginates as a dispersant to enhance suspension performance and reduced bubble problem from electrolysis of water. The characteristics measurement of TiO2/water nanofluid and methylene blue (MB) photocatalytic degradation experiments were carried out. Then, we used the constant current electrophoretic deposition method with a stainless steel substrate for the electrode, the TiO2 deposited on positive electrode to form the TiO2 coated specimens. We check the uniformity and cracks of coating surface on the completed specimens to determine the optimal parameters of EPD process by a optical microscope (OM) and scanning electron microscope (SEM). Finally, the selected specimen was put into the test box of gaseous pollutants to conduct the photocatalytic degradation of formaldehyde experiments for nine hours under radiation of the LED light board with wavelength of 380-385 nm, 427-432 nm, and 460-465 nm separately.
    The results showed that the properties of TiO2/water nanofluid were changed after doping LiNO3. MB experiments could be observed the TiO2/water nanofluid with LiNO3 of 0.02M had best result of photocatalytic degradation, and the degradation rate could reach to 34%. In the EPD process, the optimum process parameters of unmodified, modified by soaking LiNO3, and modified by codeposition of LiNO3 were 7mA/9min, 7mA/9min, and 5mA/10min, respectively. The degradation of formaldehyde experiment using specimen with best process parameters was found the wavelength of irradiation did affect the photocatalytic properties of the specimen. The LiNO3 doped specimen had best degradation of formaldehyde at 427-432 nm of irradiation wavelength, and two kinds of ways to dope LiNO3 had a significant effect. The results showed that after LiNO3 doped could achieve photocatalytic degradation under visible light and the optimum photocatalytic performance should be according to the wavelength of irradiation between 427-432 nm.

    摘要 ..................................................... i Abstract ................................................ ii 致謝 .................................................... iv 目錄 ..................................................... v 表目錄 .................................................. vii 圖目錄 ..................................................viii 第一章 緒論 ................................................ 1 1.1 前言 ................................................. 1 1.2 研究動機與目的 .........................................2 1.3 研究方法 .............................................. 2 1.4 文獻回顧 .............................................. 3 1.4.1 電泳沉積法相關文獻 .................................... 3 1.4.2 光觸媒在可見光下催化相關文獻 ............................ 4 第二章 理論基礎 ............................................. 6 2.1 光觸媒 ................................................ 6 2.2 光催化反應 ............................................. 8 2.2.1 光激發波長 ........................................... 8 2.2.2 光觸媒奈米化 ......................................... 8 2.2.3 光催化反應機制 ........................................ 9 2.2.4 光催化反應一階動量方程式 ............................... 12 2.3 光觸媒改質 ............................................ 13 2.4 光觸媒膜片製備方法 ..................................... 14 2.4.1 蒸鍍法 ............................................. 14 2.4.2 濺鍍法 ............................................. 14 2.4.3 化學氣相沈積法 ....................................... 15 2.4.4 溶膠-凝膠法 ......................................... 15 2.5 電泳沉積法 ............................................ 16 2.5.1 電泳沉積法原理 ....................................... 16 2.5.2 電泳懸浮液 .......................................... 17 2.5.3 電泳沉積法的應用與優缺點 ............................... 18 2.5.4 藻酸鹽 ............................................. 18 2.6 甲基藍 ............................................... 19 2.7 甲醛 ................................................. 19 第三章 實驗方法 ............................................ 21 3.1 實驗材料與設備 ......................................... 21 3.2 實驗流程圖 ............................................ 22 3.2.1 甲基藍實驗流程 ....................................... 22 3.2.2 甲醛實驗流程 ........................................ 23 3.3 奈米流體製備 .......................................... 24 3.4 甲基藍光催化降解實驗 .................................... 25 3.5 電泳沉積實驗 .......................................... 26 3.6 光觸媒浸泡改質 ......................................... 27 3.7 甲醛光催化降解實驗 ..................................... 28 第四章 結果與討論 .......................................... 31 4.1 二氧化鈦顆粒與奈米流體性能檢測 ............................ 31 4.2 甲基藍光催化降解實驗分析 ................................. 34 4.3 燒結溫度對二氧化鈦的影響 ..................................38 4.4 電泳沉積試片篩選 ....................................... 39 4.5 浸泡改質與成分分析 ..................................... 54 4.6 甲醛光催化降解實驗分析 .................................. 55 4.6.1 380-385 nm LED .................................... 55 4.6.2 427-432 nm LED .................................... 57 4.6.3 460-465 nm LED .................................... 59 4.6.4 光催化降解甲醛性能比較 ................................ 61 第五章 結果與建議 .......................................... 64 第六章 參考文獻 ............................................ 65 表目錄 表3-1 實驗材料 ............................................ 21 表3-2 實驗儀器設備 ......................................... 21 表3-3 電泳沉積參數 ......................................... 26 表3-4 LED燈板的電流與電壓控制 ............................... 30 圖目錄 圖2-1 加入觸媒前後反應途徑 ................................... 7 圖2-2 Honda−Fujishima effect示意圖 ........................ 7 圖2-3 不同半導體與溶液電解質接觸之能隙位置(pH=1) ............... 11 圖2-4 光觸媒的光催化機制示意圖 ............................... 11 圖2-5 太陽光的波峰範圍 ..................................... 14 圖2-6 電泳沉積示意圖 ....................................... 17 圖3-1 甲基藍實驗流程圖 ..................................... 22 圖3-2 甲醛實驗流程圖 ....................................... 23 圖3-3 二氧化鈦粉末 ......................................... 24 圖3-4 甲基藍設備示意圖 ..................................... 25 圖3-5 電泳沉積實驗示意圖 .................................... 27 圖3-6 甲醛氣體污染物測試箱示意圖 ............................. 29 圖3-7 相同電流下LED燈板的波長與光強度(I=1 A) .................. 29 圖3-8 LED燈板光強度調至一致(控制電流) ........................ 30 圖4-1 二氧化鈦奈米粒子TEM圖 ................................. 31 圖4-2 TiO2/water奈米流體摻雜不同濃度硝酸鋰的平均粒徑影響 ........ 32 圖4-3 TiO2/water奈米流體摻雜不同濃度硝酸鋰的ζ電位影響 .......... 33 圖4-4 TiO2/water奈米流體摻雜不同濃度硝酸鋰的pH值影響 ........... 33 圖4-5 不同濃度下甲基藍的波長 ................................. 35 圖4-6 濃度校正曲線 ......................................... 36 圖4-7 二氧化鈦摻雜不同濃度硝酸鋰對甲基藍的降解C/C0 .............. 36 圖4-8 二氧化鈦摻雜不同濃度硝酸鋰對甲基藍的降解效果 ............... 37 圖4-9 二氧化鈦燒結前後的晶相變化 ............................. 38 圖4-10 不同時間與電流的膜厚變化 .............................. 39 圖4-11 TiO2/water奈米流體試片OM圖(5mA/3min) ................ 40 圖4-12 TiO2/water奈米流體試片OM圖(5mA/5min) ................ 40 圖4-13 TiO2/water奈米流體試片OM圖(5mA/7min) ................ 41 圖4-14 TiO2/water奈米流體試片OM圖(5mA/9min) ................ 41 圖4-15 TiO2/water奈米流體試片OM圖(5mA/11min) ............... 42 圖4-16 TiO2/water奈米流體試片OM圖(7mA/3min) ................ 42 圖4-17 TiO2/water奈米流體試片OM圖(7mA/5min) ................ 43 圖4-18 TiO2/water奈米流體試片OM圖(7mA/7min) ................ 43 圖4-19 TiO2/water奈米流體試片OM圖(7mA/9min) ................ 44 圖4-20 TiO2/water奈米流體試片OM圖(7mA/11min) ............... 44 圖4-21 TiO2/water奈米流體試片OM圖(9mA/3min) ................ 45 圖4-22 TiO2/water奈米流體試片OM圖(9mA/5min) ................ 45 圖4-23 TiO2/water奈米流體試片OM圖(9mA/7min) ................ 46 圖4-24 TiO2/water奈米流體試片OM圖(9mA/9min) ................ 46 圖4-25 TiO2/water奈米流體試片OM圖(9mA/11min) ............... 47 圖4-26 TiO2/water奈米流體摻雜0.01M硝酸鋰試片OM圖(3mA/10min)... 47 圖4-27 TiO2/water奈米流體摻雜0.01M硝酸鋰試片OM圖(3mA/15min) .. 48 圖4-28 TiO2/water奈米流體摻雜0.01M硝酸鋰試片OM圖(3mA/20min) .. 48 圖4-29 TiO2/water奈米流體摻雜0.01M硝酸鋰試片OM圖(5mA/10min) .. 49 圖4-30 TiO2/water奈米流體摻雜0.01M硝酸鋰試片OM圖(5mA/15min) .. 49 圖4-31 TiO2/water奈米流體摻雜0.01M硝酸鋰試片OM圖(5mA/20min) .. 50 圖4-32 TiO2/water奈米流體試片SEM圖(7mA/9min) ............... 51 圖4-33 TiO2/water奈米流體試片SEM圖(9mA/9min) ............... 51 圖4-34 TiO2/water奈米流體摻雜0.01M硝酸鋰試片SEM圖(3mA/10min) . 52 圖4-35 TiO2/water奈米流體摻雜0.01M硝酸鋰試片SEM圖(3mA/15min) . 52 圖4-36 TiO2/water奈米流體摻雜0.01M硝酸鋰試片SEM圖(5mA/10min) . 53 圖4-37 ESCA能譜(Li) ...................................... 54 圖4-38 380-385 nm LED燈板的光催化降解實驗圖 .................. 56 圖4-39 380-385 nm LED燈板的光催化降解ln(C/C0) .............. 56 圖4-40 380-385 nm LED燈板的光催化降解k’ .................... 57 圖4-41 427-432 nm LED燈板的光催化降解實驗圖 .................. 58 圖4-42 427-432 nm LED燈板的光催化降解ln(C/C0) .............. 58 圖4-43 427-432 nm LED燈板的光催化降解k’ .................... 59 圖4-44 460-465 nm LED燈板的光催化降解實驗圖 .................. 60 圖4-45 460-465 nm LED燈板的光催化降解ln(C/C0) .............. 60 圖4-46 460-465 nm LED燈板的光催化降解k’ .................... 61 圖4-47 380-385 nm LED的ln(C/C0)平均降解效率比較 ............. 62 圖4-48 427-432 nm LED的ln(C/C0)平均降解效率比較 ............. 62 圖4-49 460-465 nm LED的ln(C/C0)平均降解效率比較 ............. 63

    [1] H.Z. Abdullah and C.C. Sorrell, TiO2 Thick Films by Electrophoretic Deposition, Journal of the Australian Ceramic Society, Vol. 44, pp. 12-16, 2008
    [2] Sylvia Bonnas, Hans-Joachim Ritzhaupt-Kleissl , Jürgen Haußelt, Electrophoretic deposition for fabrication of ceramic microparts, Journal of the European Ceramic Society, Vol. 29, pp. 1837-1845, 2009
    [3] Bram Neirinck, Jan Fransaer, Omer Van der Biest and Jef Vleugels, Aqueous electrophoretic deposition in asymmetric AC electric fields (AC-EPD), Electrochemistry Communications, Vol. 11, pp. 57-60, 2009
    [4] D. Zhitomirskya, J.A. Roether, A.R. Boccaccini, I. Zhitomirsky, Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications, journal of materials processing technology, Vol. 209, pp. 1853–1860, 2009
    [5] S. Dor, S. Ruhle, A. Ofir, M Adler, L. Grinis and A.Zaban, The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.342, pp. 1853-1860, 2009
    [6] V. Brezov’a, A. Blazkov’a, L Karpinsk’y, J. Groskov’a, B. Havl’inov’a, V. Jor’ik, M. Eeppan, Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 109, pp. 177-183, 1997
    [7] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, Vol. 293, pp. 269-271, 2001
    [8] Y. Bessekhouad, D. Robert, J-V Weber, N. Chaoui, Effect of alkaline-doped TiO2 on photocatalytic efficiency, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 167, pp. 49–57, 2004
    [9] Yu Yang, Qingyin Wu, Yihang Guo, Changwen Hu, Enbo Wang, Efficient degradation of dye pollutants on nanoporous polyoxotungstate–anatase composite under visible-light irradiation, Journal of Molecular Catalysis A: Chemical, Vol. 225, pp. 203–212, 2005
    [10] Jiaguo Yu, Minghua Zhou, Bei Cheng, Xiujian Zhao, Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders, Journal of Molecular Catalysis A: Chemical, Vol. 246, pp. 176–184, 2006
    [11] S. W. Chen, J. M. Lee, K. T. Lu, C. W. Pao, J. F. Lee, T. S. Chan, and J. M. Chen, Band-gap narrowing of TiO2 doped with Ce probed with x-ray absorption spectroscopy, Applied Physics Letters, Vol. 97, pp. 012104, 2010
    [12] S. Yin, P. Zhnag, B. Liu, X. Liu, T. Sato, D. Xue and S. W. Lee, Microwave-assisted hydrothermal synthesis f monoclinic nitrogen-doped titania photocatalyst and its DeNOx ability under visible LED light irradiation, Research on Chemical Intermediates, Vol. 36, pp. 69-75, 2010
    [13] Catalyst,New World Encyclopediancyclopedia:
    https://www.newworldencyclopedia.org/entry/Catalyst
    [14] Akira Fujishim, Tata N. Rao, Donald A. Tryk, Titanium dioxide photocatalysise, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 1, pp. 1-21, 2000
    [15] 賴炤銘、李錫隆, “奈米材料的特殊效應與應用” ,CHEMISTRY,61 卷,4 期,pp. 585-597,2003
    [16] 奈米科技,奈米光觸媒,奈米光觸媒材料:
    http://140.128.17.238:5566/celebrate/celebrate6/neon/group06/
    [17] GUPTA Shipra Mital and TRIPATHI Manoj, A review of TiO2 nanoparticles, Chinese Science Bulletin, Vol. 56, pp. 1639-1657, 2011
    [18] Amy L. Linsebigler, Guangquan Lu and John T. Yates, Jr., Photocatalysis on TiOn Surfaces Principles, Mechanisms, and Selected Results, Chemical Reviews, Vol. 95, pp. 735-758, 1995
    [19] 高濂、鄭珊、張青紅, “奈米光觸媒” ,五南,台北,2004
    [20] 謝欣媛, “溶液燃燒合成法製備可見光光觸媒TiO2之製程開發” ,國立成功大學,碩士論文,台南,2005
    [21] 地科教室,溫室氣體及懸浮微粒,3.2輻射的特性:
    http://140.115.123.30/gis/globalc/CHAP0302.htm
    [22] 陳致宏, “利用遠距氧電漿氧化熱蒸鍍鋅層製作氧化鋅之製程與特性研究” ,義守大學,碩士論文,高雄,2008
    [23] 葉雲友, “以射頻磁控濺鍍法製備二氧化鈦光觸媒玻璃之製程參數與特性研究” ,國立台灣師範大學,碩士論文,台北,2011
    [24] 張碩修, “具可見光吸收之銅、鉻、鐵改質型TiO2 奈米光觸媒” ,東海大學,碩士論文,台中,2008
    [25] 潘淑憶, “電泳沉積法製作光觸媒濾網與應用於降解甲醛氣體污染物之研究” ,國立台灣師範大學,碩士論文,台北,2011
    [26] 蔡裕榮、周禮君, “以溶膠凝膠法製備透明導電氧化物薄膜的探討” ,CHEMISTRY,60 卷,3 期,pp. 307-318,2002
    [27] 顏志羽, “以水系電泳沉積法製備奈米碳膜” ,大同大學,碩士論文,台北,2007
    [28] 百度百科,ZETA電位:
    http://baike.baidu.com/view/416617.htm
    [29] 維基百科,藻酸鹽:
    http://zh.wikipedia.org/zh-tw/%E6%B5%B7%E8%97%BB%E9%85%B8
    [30] 王士庭, “可見光應答氮氧化鈦光觸媒之材料特性與光催化活性探討” ,碩士論文,大同大學材料工程研究所,台北,台灣,2009
    [31] A+醫學百科,甲醛:
    http://cht.a-hospital.com/w/%E7%94%B2%E9%86%9B
    [32] 賴信穎, “二氧化鈦添加氫氧基磷灰石對水中污染物光分解之效應” ,碩士論文,國立成功大學化學工程學系,台南,台灣,2007

    下載圖示
    QR CODE