簡易檢索 / 詳目顯示

研究生: 呂文助
Lu Wen Chu
論文名稱: 以Canny邊緣檢測法與形態學分割方法探討大鼠聲門面積曲線之研究
The study of Canny edge detection method and morphological segmentation method to make the curves of glottal area
指導教授: 吳順德
Wu, Shuen-De
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 61
中文關鍵詞: 聲門Canny邊緣檢測法形態學
英文關鍵詞: Glottis, Canny edge detection method, morphology
論文種類: 學術論文
相關次數: 點閱:245下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聲門在動物中佔有非常重要的地位,其動態變化在目前生理研究也是一重要的議題。本研究主要目的為探討大鼠聲門的影像處理運用Matlab電腦程式運算大鼠聲門面積並描繪曲線,改善目前人工每張數位影像套圈聲門範圍並計算面積的繁瑣。本研究以Canny邊緣檢測法與形態學分割方法來探討大鼠聲門面積曲線,研究結果發現本實驗的演算法可以成功的找出貼近大鼠聲門的邊緣,並且可以形成一封閉的輪廓線以取得大鼠聲門的面積,可以更進ㄧ步的分析,在速度上也是較傳統主動輪廓線模型要來的有效率。

    Glottis servers a very major function in animals and its dynamic change is also a critical subject in physiological research. This research aims to analyze the image processing methods for glottis by using Matlab computer programming tools to estimate the glottal area and to plot the correspondent charts. We hope to simplify the manual processing of targeting glottal area in digital image and the calculation of area. The study employs Canny edge detection method and morphological segmentation method to make the curves of glottal area. The results show that the algorithm adopted by our experiments could successfully locate the edge of glottal area and form a closed-end contour to obtain the measure of glottal area. Not only would the method help further analyses, but they create higher efficiency than does the traditional active contour liner model.

    致謝 .......................................... Ⅰ 中文摘要 .......................................... Ⅱ 英文摘要 ............................................... Ⅲ 目錄 .......................................... Ⅳ 圖目錄 ......................................... Ⅶ 表目錄 .......................................... XI 第一章 緒論.................................................. 1 1.1 前言.................................................. 2 1.2 研究動機.................................................. 3 1.3 論文流程.................................... 4 1.4 論文架構.................................... 4 第二章 文獻探討..................................... 5 2.1 大鼠聲門影像取得................................. 5 2.1.1 內視鏡(Endoscopy)................................ 5 2.1.2 數位相機(Digital Camera)......................... 6 2.2 影像分割演算法文獻探討............................. 7 2.2.1 參數式主動式輪廓線模型........................... 7 2.2.2 Canny 邊緣偵測.................................. 11 第三章 影像處理方法介紹................................. 15 3.1 RGB色彩模式與YIQ色彩模式........................... 15 3.2 彩色影像轉灰階影像..................... 17 3.3 維納濾波(Wiener Filter)............................ 18 3.4 Otsu最佳選值法................................... 19 3.5 數學形態學(Mathematical morphology).............. 22 3.5.1 浸蝕(Erosion)................................. 23 3.5.2 膨脹(Dilation)................................ 24 3.5.3 斷開(Opening)................................. 25 3.5.4 閉合(Closing)................................. 26 第四章 自動大鼠聲門面積檢測方法........................ 28 4.1 影像取得......................................... 28 4.1.1 影像取得注意事項................................ 28 4.2 融合Canny Edge演算法和Otsu最佳取值之影像分割演算法.. 29 4.3 影像數學形態學處理步驟........................ 36 4.4 大鼠聲門影像分割之結果分析......................... 41 第五章 實驗結果與比較................................ 47 5.1 實驗結果...... ................................. 47 5.2 實驗結果比較..................................... 47 5.2.1 峰值雜訊比(Peak Signal to Noise Ratio, PSNR)..... 47 5.2.2 目標物形狀尖銳實驗結果PSNR比較...................... 49 5.2.3 目標物形狀尖銳且內部不均勻實驗結果PSNR比較........... 50 5.2.4 目標物形狀非尖銳實驗結果PSNR比較................... 51 5.2.5 目標物面積過小實驗結果PSNR比較................... 53 5.2.6 目標物邊緣模糊實驗結果PSNR比較................... 54 5.2.7 實驗結果比較討論................................ 55 5.3 未來展望........................................ 56 第六章 參考文獻...................................... 58

    [1]K. Z. Lee, D. D. Fuller, I. J. Lu, L. C. Ku and J. C. Hwang, "Pulmonary C-fiber receptor activation abolishes uncoupled facial nerve activity from phrenic bursting during positive end-expired pressure in the rat,” Journal of Appied Physiology, Vol.104, pp.119-129, 2008.
    [2]K. Z. Lee, D. D. Fuller, I. J. Lu, L. C. Ku and J. C. Hwang, ”Uncoupling of upper airway motor activity from phrenic bursting by positive end-expired pressure in the rat”, Journal of Appied Physiology, Vol. 102, pp. 878-889, 2007.
    [3]I. J. Lu, K. Z. Lee and J. C. Hwang, “Capsaicin-induced activation of pulmonary vagal C fibers produces reflex laryngeal closure in the rat,” Journal of Appied Physiology, Vol.101, pp. 1104-1112, 2006.
    [4]I. J. Lu, K. Z. Lee, J. T. Lin and J.C. Hwang, ”Capsaicin administration inhibits the abducent branch but excites the thyroarytenoid branch of the recurrent laryngeal nerves in the rat,” Journal of Appied Physiology, Vol.98, pp.1646-1652, 2005.
    [5]A. Skalski, T. Zielinki, “Analysis of vocal folds movement in high speed videoendoscopy based on level set segmentation and image registration,” Signals and ectronic Systems, 2008. ICSES '08. International Conference, pp.223-226, 2008.
    [6]Y. Yan, X. Chen, and D. Bless, “Automatic tracing of vocal-fold motion from high-speed digital images, ”IEEE Transactions on Biomedical Engineering, vol.53, pp.1394-1400, 2006.
    [7]S. Allin, J. Galeotti, G. Stetten, and S. H. Dailey, ”Enhanced snake based segmentation of vocal folds,” Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium, Vol.1 , pp.812-815, 2004.
    [8]J. Lohscheller, H. Toy, F. Rosanowski, U. Eysholdt, and D. Michael “Clinically Evaluated Procedure for the Reconstruction of Vocal Fold Vibrations from Endoscopic Digital High-Speed Videos,” Medical Image Analysis, Vol.11, pp.400-413, 2007.
    [9]M. Kass, A. Witkin, and D. Terzopoulos, ”Snakes: Active contour models,” International Journal of Computer Vision, vol.1, no.4, pp.321–331, 1988.
    [10]L. D. Cohen, “On active contour models and balloons,” CVGIP: Imag. Under., vol.53, no. 2, pp.211-218, 1991.
    [11]V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,”International Journal of Computer Vision, vol.22, no.1, pp.61-79, 1997.
    [12]T. F. Chan, and L. A. Vese “Active contours without edges,” IEEE Transactions on Image Processing, vol.10, no.2, pp.266-277, 2001.
    [13]R. Malladi, J. A. Sethian, and B. Vemuri, “Shape modeling with front propagation: A Level Set Approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, no.2, pp.158-176, 1995.
    [14]F. F. Leymarie, and M. D. Levine, “Tracking Deformable Objects in the Plane Using an Active Contour Model,”Vol. PAMI-15, no.6, pp.617-634, 1993.
    [15]J. Canny, “A Computational Approach to Edge Detection,”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.PAMI-8, No.6, 1986, pp.679-698.[16]Lena彩色影像 http://www.csie.nctu.edu.tw/~zlxuan/lena/lenna.html
    [17]Wikipedia: public editor, “RGB Color Model, ”Medical Image Analysis, Vo1.11, pp.400-413, 2007.
    [18]鍾國亮,影像處理與電腦視覺,東華書局,民國97年12月,頁7-8。
    [19]J. S. Lim, “Two-Dimensional Signal and Image Processing,” Englewood licffs, NJ, Prentice Hall, 1990, p. 548, equations 9.44-9.46.
    [20]N. Otsu, ”A Threshold Selection Method from Gray-level Histograms,”IEEE Transactions on Systems, Man, and Cybernetics vol.9, no.1, pp.62-66.
    [21]R. M. Haralick, S. R. Stenberg, and X. Huang, “Image analysis using mathematical morphology, ”IEEE Transactions on Pattern Anal. Mach. Intell.,vol.PAMI-9, pp.532–550, 1987.
    [22]R. C. Gonzalez, R. E. Woods & Steven L. Eddins, Digital Image Processing Using MATLAB ,1st Edition.
    [23]J. Dehmeshki, H. Amin, M. Valdivieso, and X. Ye, “Segmentation of Pulmonary Nodules in Thoracic CT Scans:A Region Growing Approach,”IEEE Transactions on Medical Imaging, Vol.7, pp.467–480, 2008.
    [24]Q. Yu, and D. A. Clausi, “IRGS: Image Segmentation Using Edge Penalties and Region Growing, ”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.30, pp.2126-2139, 2008.
    [25]Q. Yu, and D.A. Clausi, “SAR Sea-Ice Image Analysis Based on Iterative Region Growing Using Semantics, ”IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, pp. 3919–3931, 2008.
    [27]S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, ”Journal of Computational Physics, pp.12-49, 1988.
    [28]V.Caselles, “Geometric models for active contours,” In Proceedings of the 1995 IEEE International Conference on Image Processing, volume 3, pp.9-12, 1995.

    QR CODE