簡易檢索 / 詳目顯示

研究生: 汪宗瑩
UANG, Tsung-Ying
論文名稱: 對𝛽,𝛾-不飽和𝛼-酮酯進行具鏡像選擇性的一價銠金屬催化之芳烴化反應:合成掌性四氫萘-2-胺
Enantioselective Rhodium(I)-Catalyzed Arylation of 𝛽,𝛾-Unsaturated 𝛼-Ketoesters: Synthesis of Chiral Tetrahydronaphthalen-2-amines
指導教授: 吳學亮
Wu, Hsyueh-Liang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 203
中文關鍵詞: 鏡像選擇性一價銠金屬催化芳烴化反應𝛽,𝛾-不飽和𝛼-酮酯芳香基硼酸試劑不對稱加成反應掌性二氫茚酮掌性雙環[2.2.1]雙烯配基
英文關鍵詞: Enantioselective, Rhodium(I)-Catalyzed, Arylation, 𝛽,𝛾-Unsaturated 𝛼-Ketoesters, Arylboronic acids, Asymmetric addition, Chiral, Chiral bicyclo[2.2.1]diene ligands
DOI URL: http://doi.org/10.6345/NTNU201900324
論文種類: 學術論文
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係探討利用1.0 mol %一價銠金屬(劑量以20為基準)與掌性雙環[2.2.1]雙烯配基L20b錯合之催化劑,以及使用0.5當量1.0 M 1,4-二氮雜雙環[2.2.2]辛烷(DABCO,劑量以20為基準)水溶液為添加劑,反應溫度為40 ℃,以甲苯為溶劑之反應條件下,催化不同芳香基硼酸試劑22對𝛽,𝛾-不飽和𝛼-酮酯或𝛽,𝛾-不飽和𝛼-酮醯胺20進行具鏡像選擇性之1,4-加成反應,產出一系列高鏡像選擇性的𝛼-酮酯及𝛼-酮醯胺產物19,產率為47–99%,鏡像超越值為95–>99.5%。藉由此條件,𝛽,𝛾-不飽和𝛼-酮酯20m和苯硼酸試劑22a進行克級一價銠金屬催化不對稱1,4-加成反應,亦能得到𝛼-酮酯ent-19am,產率大於99%,鏡像超越值大於99.5%。
    此外,預期以掌性𝛼-酮酯ent-19am經水解反應(hydrolysis)、夫里德耳-夸夫特醯化反應(Friedel-Crafts acylation)、還原反應(reduction)及酉品重排反應(pinacol rearrangement)等一系列反應步驟,生成4-芳基𝛽-四氫萘酮(4-aryl substituted 𝛽-tetralones,9a),再經還原胺化反應(reductive amination),合成出具生物活性之掌性四氫萘-2-胺(tetrahydronaphthalen-2-amines,11)。

    This thesis describes an enantioselective addition of arylboronic acids 22 to 𝛽,𝛾-unsaturated 𝛼-ketoesters or 𝛽,𝛾-unsaturated 𝛼-ketoamide 20 in toluene at 40 ℃ in the presence of 1.0 mol % of a chiral Rh(I)-catalyst (the amount was based on 20), in situ generated from [RhCl(C2H4)2]2 and the chiral bicyclo[2.2.1]heptadiene L20b, and 0.5 equiv of 1.0 M aqueous 1,4-diazabicyclo[2.2.2]octane (DABCO, the amount was based on 20) as an additive. The desired 𝛼-ketoesters and 𝛼-ketoamide 19 were generated in 47–99% yields with 95–>99.5% ee’s. A gram scale operation of this reaction of phenylboronic acid 22a to 𝛽,𝛾-unsaturated 𝛼-ketoester 20m could be achieved to afford the desired 𝛼-ketoester ent-19am in >99% yield with >99.5% ee.
    In addition, the synthesis of 4-aryl substituted 𝛽-tetralones 9a was planned by the hydrolysis of 𝛼-ketoester ent-19am followed by Friedel-Crafts acylation, reduction and pinacol rearrangement. After reductive amination, the bioactive chiral tetrahydro-naphthalen-2-amines 11 were synthesized.

    謝誌 i 摘要 iv Abstract vi 第一章 緒論 1 第二章 文獻回顧及研究動機 7 第三章 掌性雙環雙烯配基的合成 18 第四章 結果與討論 27 一、 𝛽,𝛾-不飽和𝛼-酮酯及𝛽,𝛾-不飽和𝛼-酮醯胺20製備方式 27 二、 反應條件之篩選暨芳香基硼酸試劑22用量之探討 28 三、 添加劑效應探討 31 四、 配基效應探討 33 五、 溶劑效應探討 39 六、 溫度效應探討 40 七、 一價銠金屬催化量效應探討 41 八、 不同親核性試劑22對反應性的探討 43 九、 不同芳香取代基之𝛽,𝛾-不飽和𝛼-酮酯20對反應性的探討 45 十、 不同酯基或醯胺基之𝛽,𝛾-不飽和𝛼-酮酯(酮醯胺)20對反應性的探討 46 十一、 不同酯基之𝛽,𝛾-不飽和𝛼-酮酯20對不同親核性試劑22的反應性探討 47 十二、 利用配基L22a參與反應之不同親核性試劑22對反應性的探討 49 第五章 絕對立體化學之探討 51 第六章 合成應用 53 一、 前言 53 二、 文獻回顧 54 三、 目標藥物11的合成 56 四、 𝛼-酮酸68生成𝛼-二氫茚酮69之可能的反應機構 59 第七章 結論 62 第八章 實驗部分 64 分析儀器及基本實驗 64 General Procedures for the Synthesis of 𝛽,𝛾-Unsaturated 𝛼-Ketoesters and 𝛽,𝛾-Unsaturated 𝛼-Ketoamide 20 67 General Procedures for Rhodium-Catalyzed Asymmetric 1,4-Addition 76 General Procedures for the Synthesis of Chiral Tetrahydronaphthalen-2-amines (11) 108 第九章 參考文獻 112 附錄一 X-Ray單晶數據與ORTEP解析圖譜 117 附錄二 核磁共振光譜圖 127

    1. Welch, W. M.; Kraska, A. R.; Sarges, R.; Koe, B. K. J. Med. Chem. 1984, 27, 1508–1515.
    2. Miki, T.; Kori, M.; Fujishima, A.; Mabuchi, H.; Tozawa, R.-i.; Nakamura, M.; Sugiyama, Y.; Yukimasa, H. Bioorg. Med. Chem. 2002, 10, 385–400.
    3. Nandagokula, C.; Poojary, B.; Vittal, S.; Shenoy, S.; Shetty, P.; Tangavelu, A. Med. Chem. Res. 2013, 22, 253–266.
    4. Umesha, B.; Basavaraju, Y. B. Russ. J. Bioorg. Chem. 2014, 40, 467–476.
    5. Wyrick, S. D.; Booth, R. G.; Myers, A. M.; Owens, C. E.; Kula, N. S.; Baldessarini, R. J.; McPhail, A. T.; Mailman, R. B. J. Med. Chem. 1993, 36, 2542–2551.
    6. Shao, L.; Wang, F.; Malcolm, S. C.; Ma, J.; Hewitt, M. C.; Campbell, U. C.; Bush, L. R.; Spicer, N. A.; Engel, S. R.; Saraswat, L. D.; Hardy, L. W.; Koch, P.; Schreiber, R.; Spear, K. L.; Varney, M. A. Bioorg. Med. Chem. 2011, 19, 663–676.
    7. Braun, v. J. v.; Manz, G.; Reinsch, E. Justus Liebig Annalen der Chemie 1929, 468, 288–303.
    8. Ohmiya, H.; Makida, Y.; Li, D.; Tanabe, M.; Sawamura, M. J. Am. Chem. Soc. 2010, 132, 879–889.
    9. Wang, X.; Wang, D. Z. Tetrahedron 2011, 67, 3406–3411.
    10. Lee, S. H.; Kim, I. S.; Li, Q. R.; Dong, G. R.; Jeong, L. S.; Jung, Y. H. J. Org. Chem. 2011, 76, 10011–10019.
    11. Rhee, S. W.; Tanga, M. J. J. Labelled Cpd. Radiopharm. 2000, 43, 925–932.
    12. Lucarini, S.; Bedini, A.; Spadoni, G.; Piersanti, G. Org. Biomol. Chem. 2008, 6, 147–150.
    13. Vincek, A. S.; Booth, R. G. Tetrahedron Lett. 2009, 50, 5107–5109.
    14. Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579–5580.
    15. Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508–11509.
    16. Brown, M. K.; Corey, E. J. Org. Lett. 2010, 12, 172–175.
    17. Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira E. M. Org. Lett. 2004, 6, 3873–3876.
    18. Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503–2508.
    19. Nishimura, T.; Nagaosa M.; Hayashi, T. Chem. Lett. 2008, 37, 860–861.
    20. Okamoto, K.; Hayashi, T.; Rawal, V. H. Org. Lett. 2008, 10, 4387–4389.
    21. Luo, Y.; Carnell, A. J. Angew. Chem. Int. Ed. 2010, 49, 2750–2754.
    22. Helbig, S.; Sauer, S.; Cramer, N.; Laschat, S.; Baro, A.; Frey, W. Adv. Synth. Catal. 2007, 349, 2331–2337.
    23. Feng, C.-G.; Wang, Z.-Q.; Shao, C.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2008, 10, 4101–4104.
    24. Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2008, 47, 4351–4353.
    25. Zhu, T.-S.; Jin, S.-S.; Xu, M.-H. Angew. Chem. Int. Ed. 2012, 51, 780–783.
    26. Cai, F.; Pu, X.; Qi, X.; Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 18066–18069.
    27. Khiar, N.; Valdivia, V.; Salvador, Á.; Chelouan, A.; Alcudia, A.; Fernández, I. Adv. Synth. Catal. 2013, 355, 1303–1307.
    28. Melcher, M.-C.; Ivšić, T.; Olagnon, C.; Tenten, C.; Lützen, A.; Strand, D. Chem. Eur. J. 2018, 24, 2344–2348.
    29. Zhu, T.-S.; Xu, M.-H. Chin. J. Chem. 2013, 31, 321–328.
    30. Wang, J.; Wang, B.; Cao, P.; Liao, J. Tetrahedron Lett. 2014, 55, 3450–3453.
    31. Wang, J.; Wang, M.; Cao, P.; Jiang, L.; Chen, G.; Liao, J. Angew. Chem. Int. Ed. 2014, 53, 6673–6677.
    32. Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409.
    33. Liu, C.-C.; Janmanchi, D.; Chen, C.-C.; Wu, H.-L. Eur. J. Org. Chem. 2012, 2503–2507.
    34. Chang, C.-A.; Uang, T.-Y., Jian, J.-H.; Zhou, M.-Y.; Chen, M.-L.; Kuo, T.-S.; Wu, P.-Y.; Wu, H.-L. Adv. Synth. Catal. 2018, 360, 3381–3390.
    35. 陳明良(2017)。碩士論文,國立臺灣師範大學化學系,臺北,臺灣。
    36. 張瓊安(2018)。博士論文,國立臺灣師範大學化學系,臺北,臺灣。
    37. Syu, J.-F.; Lin, H.-Y.; Cheng, Y.-Y.; Tsai, Y.-C.; Ting, Y.-C.; Kuo, T.-S.; Janmanchi, D.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Chem. Eur. J. 2017, 23, 14515–14522.
    38. Abele, S.; Inauen, R.; Spielvogel, D.; Moessner, C. J. Org. Chem. 2012, 77, 4765–4773.
    39. 林黃櫻(2018)。碩士論文,國立臺灣師範大學化學系,臺北,臺灣。
    40. 李治毅(2017)。碩士論文,國立臺灣師範大學化學系,臺北,臺灣。
    41. (a) Allais, C.; Constantieux, T.; Rodriguez, J. Synthesis 2009, 15, 2523–2530. (b) Weng, J.-Q.; Deng, Q.-M.; Wu, L.; Xu, K.; Wu, H.; Liu, R.-R.; Gao, J.-R.; Jia, Y.-X. Org. Lett. 2014, 16, 776–779.
    42. Wu, C.-Y.; Zhang, Y.-F.; Xu, M.-H. Org. Lett. 2018, 20, 1789–1793.
    43. Jian, J.-H.; Hsu, C.-L.; Syu, J.-F.; Kuo, T.-S.; Tsai, M.-K.; Wu, P.-Y.; Wu, H.-L. J. Org. Chem. 2018, 83, 12184–12191.
    44. (a) Yang, Q.; Ulysse, L. G.; McLaws, M. D.; Keefe, D. K.; Guzzo, P. R.; Haney, B. P. Org. Synth. 2012, 89, 44–54.
    (b) White, J. D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1999, 64, 7871–7884.
    45. Chavan, S. P.; Garai, S.; Dutta, A. K.; Pal, S. Eur. J. Org. Chem. 2012, 6841–6845.
    46. Sharma, A. K.; Subramani, A. V.; Gorman, C. B. Tetrahedron 2007, 63, 389–395.

    下載圖示
    QR CODE