簡易檢索 / 詳目顯示

研究生: 林佩瑩
Lin, Pei-Ying
論文名稱: 極端降雨相關指標在臺灣長期變化的分析:觀測、模擬及未來推估
Examining the long-term changes of extreme rainfall related indices in Taiwan: Observation, simulation and future projection
指導教授: 陳正達
Chen, Cheng-Ta
口試委員: 許晃雄
Hsu, Huang-Hsiung
王嘉琪
Wang, Chia-Chi
黃婉如
Huang, Wan-Ru
余嘉裕
Yu, Jia-Yuh
陳正達
Chen, Cheng-Ta
口試日期: 2022/06/28
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 極端降雨指標高解析度網格降雨數據動力降尺度氣候變遷
英文關鍵詞: Extreme rainfall indices, High resolution grid rainfall data, Dynamical downscaling, Climate change
研究方法: 現象分析
DOI URL: http://doi.org/10.6345/NTNU202200903
論文種類: 學術論文
相關次數: 點閱:217下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據IPCC的氣候變遷科學評估,當大氣受到暖化的影響,全球降雨型態也隨之產生改變,大部分陸地上的強降雨事件發生頻率有增加的變化,不過各地局部的變化趨勢還是有所不同。本研究以氣候變遷偵測與指標專家小組所制定的極端降雨相關指標,使用高解析度網格觀測資料,調查近60年臺灣不同季節的極端降雨特性變化;並使用兩個動力降尺度模式,分析其對於極端指標在現今氣候的模擬能力及未來變化的推估。
    我們發現,對於近60年的長期趨勢變化,冬季東北角極端降雨的強度跟頻率增加,且極端降雨增加的區域延伸到南部;春季則是北部降雨強度跟總降雨量增加,冬春季皆受到東北海域水氣通量輻合增強所致。梅雨季降雨天數減少,可能由於臺灣到西北太平洋一帶水氣通量輻散。颱風季臺灣附近有氣旋異常環流,南部及花蓮北部的降雨強度、大雨日數統計上顯著增加。
    對於現今氣候的模擬,WRF-MRI跟WRF-HiRAM在梅雨季皆和觀測資料有較低的相關係數,其餘各季的降雨指標,模式大多能模擬其空間分布。未來變化推估方面,預期春季東北部及颱風季全台降雨天數有統計上顯著的減少;梅雨季跟颱風季在西部極端降雨強度跟頻率增加。對於天數改變的原因,颱風季主要受副熱帶高壓在未來增強所致;對於極端降雨強度跟頻率的變化,則是受西南氣流增強影響。

    According to the IPCC, heavy rain increases in most land regions due to global warming. However, the sign of the change is different in areas. We use high-resolution gridded observation data to investigate extreme rainfall related indices from the ETCCDI during the recent 60 years in Taiwan. In addition, dynamical downscaling models are for present-day simulation and projection of extreme indices.
    For the long-term change, the extreme rainfall intensity and frequency have increased in the northeast area and extended to southern Taiwan in winter; the total rainfall increased over northern Taiwan in spring, with the increase in moisture flux convergence over the northeast ocean. The rainy days have decreased during the Mei-Yu season, likely due to the decrease in moisture flux convergence over Taiwan. During the typhoon season, the days of heavy rain have increased over southern Taiwan and the north area of Hualien due to the cyclonic circulation near Taiwan.
    For the present-day simulation, WRF-MRI and WRF-HiRAM produce lower correlation values during the Mei-Yu season but can capture the spatial distribution of other indices. For the future projections, the rainy days will decrease over northeastern Taiwan in spring and over Taiwan in the typhoon season. In the Mei-Yu and typhoon seasons, extreme rainfall will increase over western Taiwan. The change in rainy days is that the Western North Pacific subtropical high will be stronger in the future. The extreme rainfall changes are due to the enhancement of southwesterly flow.

    摘要 ii Abstract iii 圖目錄 vi 第1章 前言 1 第2章 資料與方法 5 2.1 資料介紹 5 2.1.1 觀測資料 5 2.1.2 環境場資料 5 2.1.3 模式資料 5 2.2 方法 6 2.2.1 極端降雨相關指標 6 2.2.2 季節劃分 7 2.2.3 計算及統計檢定 8 第3章 長期趨勢變化討論 10 3.1 冬季 10 3.2 春季及梅雨季 11 3.3 颱風季及秋季 12 3.4 全年 13 第4章 模式模擬討論 15 4.1 現今氣候模擬 15 4.1.1 氣候平均 15 4.1.2 年變化 17 4.2 未來變化推估討論 17 4.2.1 春季及梅雨季 17 4.2.2 颱風季及秋季 18 4.2.3 全年 19 第5章 結論與未來展望 21 參考文獻 23 附錄A 63

    盧孟明、卓盈旻、李清縢、林昀靜、李思瑩,2012。臺灣氣候變化:1911~2009年資料分析,臺灣氣候變遷科學報告,40(3), 297–322。
    臺灣氣候變遷推估資訊與調適知識平台計畫,2017:臺灣氣候變遷科學報告–物理現象與機制。
    許晃雄,2020:中央氣象局「長期預報資訊於水資源應用評估」委託研究計畫成果報告。
    Alexander, L. V., Bador, M., Roca, R., Contractor, S., Donat, M. G., & Nguyen, P. L., 2020: Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environmental Research Letters, 15(5), 055002.
    Chang, C. P., Lei, Y., Sui, C. H., Lin, X., & Ren, F., 2012: Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid‐20th century. Geophysical Research Letters, 39(18).
    Chen, C. S., & Chen, Y. L., 2003: The rainfall characteristics of Taiwan. Monthly Weather Review, 131(7), 1323–1341.
    Chen, C.-S., Y.-L. Chen, C.-L. Liu, P.-L. Lin, and W.-C. Chen, 2007: Statistics of Heavy Rainfall Occurrences in Taiwan. Wea. Forecasting, 22, 981–1002.
    Emori, S., & Brown, S. J., 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophysical Research Letters, 32(17).
    Hung, C.-w., and P.-k. Kao, 2010: Weakening of the Winter Monsoon and Abrupt Increase of Winter Rainfalls over Northern Taiwan and Southern China in the Early 1980s. J. Climate, 23, 2357–2367.
    Huang, W. R., and J. C. L. Chan, 2014: Dynamical downscaling forecasts of Western North Pacific tropical cyclone genesis and landfall, Clim. Dyn., 42, 2227–2237.
    Huang, W.-R., Y.-H. Chang, C.-T. Cheng, H.-H. Hsu, C.-Y. Tu, and A. Kitoh, 2016a: Summer convective afternoon rainfall simulation and projection using WRF driven by global climate model. Part I: Over Taiwan. Terr. Atmos. Oceanic Sci., 27, 659–671.
    Huang, W.-R., Y.-H. Chang, H.-H. Hsu, C.-T. Cheng, and C.-Y. Tu, 2016c: Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: Contributions from different types of rain events. J. Geophys. Res., 121, 13973–13988.
    Huang, W.-R., P.-H. Huang, Y.-H. Chang, C.-T. Cheng, H.-H. Hsu, C.-Y. Tu, and A. Kitoh, 2019: Dynamical downscaling simulation and future projection of extreme precipitation activities in Taiwan during the mei-yu seasons. J. Meteor. Soc. Japan, 97, 481–499.
    Henny, L., Thorncroft, C. D., Hsu, H. H., & Bosart, L. F., 2021: Extreme rainfall in Taiwan: Seasonal statistics and trends. Journal of Climate, 34(12), 4711–4731.
    IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.), Cambridge University Press, 1535 pp.
    Liu, S. C., C. Fu, C.-J. Shiu, J.-P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36.
    Pfahl, S., O’Gorman, P. A., & Fischer, E. M., 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change, 7(6), 423–427.
    Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections, J. Geophys. Res. Atmos., 118, 2473–2493.
    Srivastava, A., Grotjahn, R., & Ullrich, P. A., 2020: Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather and Climate Extremes, 29, 100268.
    Tung, Y. S., Wang, C. Y., Weng, S. P., & Yang, C. D., 2022: Extreme index trends of daily gridded rainfall dataset (1960–2017) in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), 1–16.
    Weng, S. P., & Yang, C. D., 2018: The construction and verification of daily gridded rainfall dataset (1960–2015) in Taiwan. Taiwan Water Conserv, 66, 33–52.
    Wu, Y.‐c., S.-Y. S. Wang, Y.-C. Yu, C.-Y. Kung, A.-H. Wang, S. A. Los, and W.-R. Huang, 2019: Climatology and change of extreme precipitation events in Taiwan based on weather types. Int. J. Climatol., 39, 5351–5366.
    Wang, C.-C., H.-H. Hsu, and Y.-T. Chen, 2021: Observed and projected frontal activities in East Asia. J. Climate, 34, 3067–3085.

    下載圖示
    QR CODE