簡易檢索 / 詳目顯示

研究生: 孫琮傑
Sun, Tsung-Chieh
論文名稱: 以自然鄰點內插法與頻帶分段線性修正重建物體頻譜反射率之研究
Spectral reflectance recovery using natural neighbor interpolation with band-divided linear correction
指導教授: 周遵儒
Chou, Tzren-Ru
學位類別: 碩士
Master
系所名稱: 圖文傳播學系
Department of Graphic Arts and Communications
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 84
中文關鍵詞: 頻譜重建頻譜反射率自然鄰點內插法
英文關鍵詞: Spectral Recovery, Spectral Reflectance, Natural Neighbor Interpolation
論文種類: 學術論文
相關次數: 點閱:174下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究重點在提出一個新的物體頻譜反射率重建方法,將真實量測的物體頻譜反射率資料與八條虛擬的反射頻譜,使用自然鄰點內插法(Natural Neighbor Interpolation,NNI)並藉由頻譜不同頻帶的線性修正方法來估計待測物體的頻譜反射率。這是一個標準從RGB值轉換到頻譜估計頻譜反射率的重建問題,已有許多研究提出各種解決的方法,並且各自有其重建優缺點。基於內插計算與線性修正的處理,新方法不僅提高重建頻譜的準確率,也避免超出色域範圍外會產生的外插情況。
    本研究方法主要分為兩個步驟。首先,使用真實量測的色票資料以自然鄰點內插法重建出反射頻譜。額外增加八條預先估計的虛擬頻譜,當作是sRGB色域的最邊界處,確定所有在色域內的測試樣本都可以被計算出來,不會有外插的問題產生。內插重建後的反射頻譜在D65標準照明體打光下,與輸入的sRGB色域測試樣本比較,其色差結果是很精確的。接著,三個定義的波長S、M、L作為調整內插重建後的頻譜控制點,讓新調整的頻譜色差繼續降低。這個頻帶修正方法分別是由波長400 nm 到S波長、S波長到M波長、M波長到L波長、L波長到波長700nm四個分段的線性轉換所組成。
    在色彩顯像模擬實驗方面,首先將馬克貝斯頻譜資料加上八條虛擬頻譜為訓練樣本,孟賽爾色票頻譜作為測試樣本這組實驗為例,在標準照明體D65下,用色差公式〖∆E〗_2000 計算其最大色差是1.6366,平均色差是0.0915。接著透過頻帶的修正,可得到最大色差1.4869,平均色差是0.0726。顏色的差異進一步得到改善。除此之外,同時也針對整個sRGB色域進行評估,計算由RGB色頻數值重建後的頻譜,其最大色差是1.6671,平均色差是0.0315。如果訓練樣本換成孟賽爾色票加上八條虛擬頻譜資料,則最大色差是1.4915,平均色差是0.0126。經由實驗數據證實本研究所提出的研究方法,估計的物體頻譜反射率相當準確。

    In this paper, we proposed an accurate recovery method of object spectral reflectance using the traditional natural neighbor interpolation, shortly named as NNI, with band-divided linear correction. Essentially, such a recovery problem was usually to transform the RGB channel values into a spectrum to simulate the reflectance of an object. There were many previous researches offering various solutions to this problem with more or less advantages and drawbacks. Our work improved the recovery result based on the interpolation approach with further correction of spectral reflectance. This new solution proposed not only gives more accurate results, but also avoids the extrapolation problem causing by the phenomena out of gamut.
    Our method consists of two stages of recovery procedures. First, the NNI interpolation was used to construct the spectral reflectance from the real samples of color checkers. Eight additional pre-determined spectra were imposed for the corners of the sRGB color space, named virtual extreme spectra, to guarantee all the test samples in the gamut spanned by the known samples; such that, the interpolating scheme worked well without the extrapolation problem. Secondly, the spectra resulting from NNI were further fine-tuned according to the difference between its sRGB color under illuminant of D65 and the original input one of ground true. Three pre-specified wave lengths, denoted S, M, and L, were selected as the control points to correct this NNI spectrum approaching to a new one with less color difference. This correction was composed of 4 piecewise linear transformations related to 4 bands from 400nm to S, from S to M, from M to L, and from L to 700nm respectively.
    Some experiments were performed to evaluate the performance of the new NNI with the virtual extreme spectra and the additional correction stage. At first, the 1269 checker spectra from Munsell book was used as the test samples under the training samples from Macbeth 24 color checkers. The largest color difference of 〖∆E〗_2000 was 1.6366 based on the illuminant of D65, and the average difference was 0.0915. And, the color differences were further improved, if the band-divided correction was adopted. Then, the largest 〖∆E〗_2000 was 1.4869, and the average difference was 0.0726. In addition, the entire gamut of sRGB was also evaluated. The spectra recovered from the specified RGB channel values lead to the largest color difference was 1.6671 and the average one was 0.0315 under the illuminant of D65, based on the training samples of Macbeth color checkers. The largest difference was 1.4915, and the average one was 0.0126, based on the training samples of Munsell book checkers. These experimental results showed that the proposed method was very accurate for the recovery of spectral reflectance.

    中文摘要 i Abstract ii 目次 iv 表次 v 圖次 vi 第一章 緒論 8 第一節 研究背景與動機 8 第二節 研究目的 10 第三節 研究問題 11 第四節 研究範圍與限制 12 第五節 名詞釋義 13 第二章 文獻探討 15 第一節 色彩相關原理與公式 15 第二節 物體頻譜反射率的量測與估計 20 第三節 文獻探討小結 31 第三章 研究方法與設計 31 第一節 研究流程 32 第二節 研究設備和工具 35 第三節 自然鄰點內插物體頻譜反射率重建法 36 第四節 頻帶分段線性修正法 46 第五節 實驗評估 52 第四章 研究結果與討論 62 第一節 三組實驗的物體頻譜反射率重建結果 62 第二節 與ISRF內插方法的比較 63 第五章 結論與建議 79 第一節 結論 79 第二節 未來工作與建議 80 參考文獻 81

    呂億德(民98)。自然影像中最佳化物體反射譜估計及其後製應用之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    林瑋如(民102)。以ISRF內插法應用於物體頻譜反射率重建之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    周小平、周瑞忠(民94) 。用Voronoi圖進行新型自然鄰點插值的幾何學方法與特性。2005計算力學學報,22(3),355-359。
    周遵儒、陳怡君(民97)。快速反射譜模擬方法。2008色彩學研討會論文集。113-120。
    張智星(民89)。MATLAB程式設計與應用。新竹市:清蔚科技。
    黃日鋒、詹文鑫、陳鴻興、胡國瑞、徐道義、孫沛立、羅梅君(民100)。顯示色彩工程學。新北市:全華圖書。
    羅梅君(民99)。數位色彩管理科學:色彩度量學。臺北市:羅梅君。
    Amidror, I. (2002). Scattered data interpolation methods for electronic imaging systems: A survey. Journal of Electronic Imaging, 11(2), 157–176. doi: 10.1117/1.1455013
    Abed, F. M., Amirshahi, S. H., & Abed, M. R. (2009). Reconstruction of reflectance data using an interpolation technique. Journal of the Optical Society of America A, 26(3), 613-624. doi: 10.1364/JOSAA.26.000613
    Agahian, F., Amirshahi, S. A., & Amirshahi, S. H. (2008). Reconstruction of reflectance spectra using weighted principal component analysis. Color Research and Application, 33(5), 360–371. doi: 10.1002/col.20431
    Amiri, M., M., & Amirshahi, S. H. (2014). A hybrid of weighted regression and linear models for extraction of reflectance spectra from CIEXYZ tristimulus values. Optical Review, 21(6), 816-825.
    Ansari, K., Amirshahi, S. H., & Moradian, S. (2006). Recovery of reflectance spectra from CIE tristimulus values using a progressive database selection technique. Coloration Technology, 122(3), 128-134. doi:10.1111/j.1478-4408.2006.00019.x
    Ayala , F., Echávarri, J. F., Renet, P., & Negueruela, A. I. (2006). Use of three tristimulus values from surface reflectance spectra to calculate the principal components for reconstructing these spectra by using only three eigenvectors. Journal of the Optical Society of America A, 23(8), 2020-2026. doi:10.1364/JOSAA.23.002020
    Bergquist, J. (2012). Display with arbitrary primary spectra. SID Symposium Digest of Technical Papers, 39(1), 783-786. doi: 10.1889/1.3069786
    Berns, R. S., Billmeyer, F. W., & Saltzman, M. (2000). Billmeyer and Saltzman's principles of color technology. New York, NY: John Wiley & Sons, Ltd.
    Berns, R. S., Imai, F. H., Burns, P. D., & Tzeng D. Y. (1998). Multi-spectral-based color reproduction research at the Munsell Color Science Laboratory. Proceeding of SPIE , 3409, 14-25. doi:10.1.1.23.6320
    Brauers, J., Schulte, N., & Aach, T. (2008). Multispectral filter-wheel cameras: Geometric distortion model and compensation algorithms. IEEE Transactions on Image Processing, 17(12), 2368–2380. doi: 10.1109/TIP.2008.2006605
    BruceLindbloom (2009). Chromatic Adaptation. Retrieved from: http://www.brucelindbloom.com/index.html?ColorCheckerCalculator.html
    Chou, T. R., & Lin, W. J. (2012). Optimal estimation of spectral reflectance based on metamerism. Proceeding of SPIE-IS&T Electronic Imaging 2012, 8292, 829213-829213-10. doi: 10.1117/12.907606
    Chou, T. R., & Sun, T. C. (2015). Spectral reflectance recovery using natural neighbor interpolation with band-divided linear correction. The 16th International Symposium on Multispectral Color Science 2015, 395-400.
    CIE(2000). About us. Retrieved from: http://www.cie.co.at/
    Cohen, J. (1964). Dependency of the spectral reflectance curves of the Munsell color chips. Psychonomic Science, 1(12), 1964, 369-370.
    Ergun, G., & Nagas, I. C. (2007). Color stability of silicone or acrylic denture Liners: An in vitro investigation. European Journal of Dentistry, 2007(1), 144-151.
    Eslahi, N., Amirshahi, S. H., & Agahian F. (2009). Recovery of spectral data using weighted canonical correlation regression. Optical Review, 16(3), 296-303.
    Fairman, H. S., & Brill, M. H. (2004). The principal components of reflectances. Color Research and Application, 29(2), 104–110. doi: 10.1002/col.10230
    Farajikhah, S., & Amirshahi, S. H. (2012). Initialization of nonnegative matrix factorization by Gaussian primaries for reconstruction of spectral data. Optical Review, 19(5), 294-305.
    Harifi, T., Amirshahi, S. H., & Agahian, F. (2008). Recovery of reflectance spectra from colorimetric data using principal component analysis embedded regression technique. Optical Review, 15(6), 302-308. doi: 10.1007/s10043-008-0049-1
    Imai, F. H., Rosen, M. R., & Berns, R. S. (2002). Metameric correction using parametric decomposition. Proceeding of CGIV 2002: The First European Conference on Colour Graphics, Imaging and Vision, 492-496.
    Interpolate my data - Interview (n.d.). Natural Neighbor. Retrieved from http://www.sadaproject.net/helpv4/natural_neighbor.html
    Lee, M. H., Park, H., Ryu, I., & Park, J.I., (2012). Fast model-based multispectral imaging using nonnegative principal component analysis. Optics Letters, 37(11), 1937-1939.
    Kim, B., Han, J., & Park, S. (2012). Spectral reflectivity recovery from the tristimulus values using a hybrid method. Journal of the Optical Society of America A, 29(12), 2612-2621. doi: 10.1364/JOSAA.29.002612
    Maloney, L. T. (1986). Evaluation of linear models of surface spectral reflectance with small numbers of parameters. Journal of the Optical Society of America A, 3(10), 1673-1683. doi:10.1364/JOSAA.3.001673
    Munsell Color Science Laboratory (2011). CIE standard illuminant data. Retrieved from: http://www.cis.rit.edu/research/mcsl/online/cie.php.
    Murakami, Y., Yamaguchi, M., Ohyama, N. (2013). Dictionary-based estimation of spectra for wide-gamut color imaging. Color Research and Application, 38(2), 120–129. doi: 10.1002/col.20729
    Parkkinen, J. P. S., Hallikainen, J., & Jaaskelainen, T. (1989). Characteristic spectra of Munsell colors. Journal of the Optical Society of America A, 6(2), 318-322. doi:10.1364/JOSAA.6.000318
    Romero, J., García-Beltrán, A., & Hernández-Andrés, J. (1997). Linear bases for representation of natural and artificial. Journal of the Optical Society of America A, 14(5),1007-1014. doi:10.1364/JOSAA.14.001007
    Sharma, G., Wu, W., & Dalal, E. N. (2005). The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research Application, 30(1), 21-30. doi: 10.1002/col.20070
    The Multi-Parametric Toolbox for Matlab (2010). MPT toolbox. Retrieved from: http://control.ee.ethz.ch/overview.en.html
    Tzeng, D. Y., & Berns, R. S. (2005). A review of principal component analysis and its application to color technology. Color Research Application, 30(2), 84-98. doi: 10.1002/col.20086
    University of Joensuu Color Group (n.d.). Spectral Database. Retrieved from: https://www.uef.fi/spectral/spectral-database.
    Vilaseca, M., Mercadal, R., Pujol, J., Arjona, M., de Lasarte, M., Huertas, R., Melgosa, M., & Imai, F. H. (2008). Characterization of the human iris spectral reflectance with a multispectral imaging system. Applied Optics, 47(30), 5622–5630. doi: 10.1364/AO.47.005622
    Westland, S., & Ripamonti, C. (2004). Computational Colour Science using Matlab. New York, NY: John Wiley & Sons, Ltd.
    Wu, D., Tian, J., & Tang, Y. (2014). Optimized basis function for spectral reflectance recovery from tristimulus values. Optical Review, 21(2), 117-216.
    Zhang, W. F., & Dai, D. Q. (2008). Spectral reflectance estimation from camera responses by support vector regression and a composite model. Journal of the Optical Society of America A, 25(9), 2286-2296. doi: 10.1364/JOSAA.25.002286
    Zhang, X., & Xu, H. (2008). Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis. Journal of the Optical Society of America A, 25(2), 371-378.
    Zhao, Y., & Berns, R. S. (2007). Image-based spectral reflectance reconstruction using the matrix R method. Color Research Application, 32(5), 343-350.

    下載圖示
    QR CODE