簡易檢索 / 詳目顯示

研究生: 徐瑋廷
Hsu, Wei-Ting
論文名稱: 轉錄因子 SPZ1 於非小細胞肺癌中透過調控 NANOG 表現促進肺癌幹細胞形成
Spermatogenic Leucine Zipper 1 (SPZ1) Promotes NANOG Expression in NSCLC and Induces Lung Cancer Stem Cells
指導教授: 王麗婷
Wang, Li-Ting
口試委員: 王麗婷
Wang, Li-Ting
許世賢
Hsu, Shih-Hsien
陳栢均
Chen, Po-Chun
口試日期: 2024/07/02
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 70
中文關鍵詞: 肺癌癌幹細胞SPZ1 NANOG c-Myc
英文關鍵詞: Lung Cancer, Cancer stem cell, Transcription factor, SPZ1, NANOG
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401726
論文種類: 學術論文
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 摘要 ii Abstract iii 第一章 緒論 1 第一節 背景介紹 1 壹 肺癌 (Lung Cancer) 1 貳 癌幹細胞 (Cancer Stem Cells, CSCs) 1 參 鹼性螺旋-圈-螺旋-亮胺酸拉鍊蛋白 (bHLH-ZIP) 1 肆 轉錄因子 Spermatogenic Leucine Zipper 1 2 伍 轉錄因子 c-Myc 3 陸 同源框蛋白 NANOG (Homeobox protein NANOG) 4 第二節 研究目的與預期結果 5 第二章 材料及研究方法 7 第一節 藥品及試劑 7 第二節 研究方法 9 壹 細胞培養與細胞株 9 貳 質體構建以及質體萃取 10 參 質體轉染與慢病毒轉導建立四環素轉錄調控細胞 (Tetracycline-On Inducible Cells) 11 肆 RNA萃取 12 伍 即時定量反轉錄聚合酶連鎖反應 (Quantitative Real time-Reverse Transcription Polymerase Chain Reaction) 13 陸 西方墨點法 14 柒 雙冷光素酶報導基因實驗 16 捌 免疫共同沉澱法 17 玖 免疫螢光染色 17 壹拾 酵母菌雙雜合系統 18 壹拾壹 免疫染色質沉澱 18 壹拾貳 細胞活性檢測試驗 19 壹拾參 細胞凋亡測試 20 壹拾肆 傷口癒合試驗 20 壹拾伍 球體形成試驗 20 壹拾陸 流式細胞術 (Flow Cytometry) 21 壹拾柒 統計分析 22 第三章 結果 23 一 SPZ1 與 NANOG 在非小細胞肺癌細胞株中高度表現 23 二 SPZ1 調控 NANOG 表現 24 三 SPZ1 透過與 NANOG promotor 結合調控其轉錄活性 24 四 SPZ1 促進幹細胞相關蛋白、增生蛋白以及遷移相關蛋白表現 25 五 SPZ1 能抑制細胞凋亡並增加細胞活力 26 六 SPZ1 促進細胞遷移 27 七 SPZ1 對癌幹細胞形成扮演重要角色 27 九 SPZ1 表現與臨床病理相關且與 NANOG 表現呈高度正相關 29 十 SPZ1 與 c-Myc 蛋白具有交互作用 30 十一 SPZ1 與 c-Myc 在細胞中表現重疊 31 十二 SPZ1 透過 bHLH 結構域與 c-Myc 產生交互作用 31 第四章 討論 34 第五章 引用文獻 37 第六章 圖 43 附錄 66

    Global Cancer Statistics 2022: the trends projection analysis. Chemical Biology Letters 10, 451 (2023).
    Bradbury, P. et al. Postoperative Adjuvant Systemic Therapy in Completely Resected Non–Small-Cell Lung Cancer: A Systematic Review. Clinical Lung Cancer 18, 259-273.e258, doi:https://doi.org/10.1016/j.cllc.2016.07.002 (2017).
    Cascetta, P. et al. KRAS in NSCLC: State of the Art and Future Perspectives. Cancers 14, doi:10.3390/cancers14215430 (2022).
    Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105-111, doi:10.1038/35102167 (2001).
    Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105-111, doi:10.1038/35102167 (2001).
    Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818-822, doi:10.1038/nature04980 (2006).
    Weintraub, H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75, 1241-1244, doi:10.1016/0092-8674(93)90610-3 (1993).
    Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000, doi:10.1016/0092-8674(87)90585-x (1987).
    Vervoort, M. & Ledent, V. The evolution of the neural basic Helix-Loop-Helix proteins. TheScientificWorldJournal 1, 396-426, doi:10.1100/tsw.2001.68 (2001).
    Caudy, M. et al. daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete-scute complex. Cell 55, 1061-1067, doi:10.1016/0092-8674(88)90250-4 (1988).
    Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885-892, doi:10.1016/0092-8674(94)90077-9 (1994).
    Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47-57, doi:10.1016/s0092-8674(00)80076-8 (1996).
    Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875-884, doi:10.1016/0092-8674(94)90076-0 (1994).
    Murre, C. et al. Structure and function of helix-loop-helix proteins. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1218, 129-135, doi:https://doi.org/10.1016/0167-4781(94)90001-9 (1994).
    Murre, C., McCaw, P. S. & Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777-783, doi:10.1016/0092-8674(89)90682-x (1989).
    Murre, C. et al. Structure and function of helix-loop-helix proteins. Biochimica et biophysica acta 1218, 129-135, doi:10.1016/0167-4781(94)90001-9 (1994).
    Murre, C. et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537-544, doi:10.1016/0092-8674(89)90434-0 (1989).
    Ledent, V., Paquet, O. & Vervoort, M. Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol 3, Research0030, doi:10.1186/gb-2002-3-6-research0030 (2002).
    Ephrussi, A., Church, G. M., Tonegawa, S. & Gilbert, W. B lineage--specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science (New York, N.Y.) 227, 134-140, doi:10.1126/science.3917574 (1985).
    Massari, M. E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Molecular and cellular biology 20, 429-440, doi:10.1128/mcb.20.2.429-440.2000 (2000).
    Ferré-D'Amaré, A. R., Prendergast, G. C., Ziff, E. B. & Burley, S. K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363, 38-45, doi:10.1038/363038a0 (1993).
    Atchley, W. R. & Fitch, W. M. A natural classification of the basic helix-loop-helix class of transcription factors. Proceedings of the National Academy of Sciences of the United States of America 94, 5172-5176, doi:10.1073/pnas.94.10.5172 (1997).
    Amati, B. et al. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233-245, doi:10.1016/0092-8674(93)90663-B (1993).
    Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211-222, doi:10.1016/0092-8674(93)90661-9 (1993).
    Dang, C. V., McGuire, M., Buckmire, M. & Lee, W. M. Involvement of the 'leucine zipper' region in the oligomerization and transforming activity of human c-myc protein. Nature 337, 664-666, doi:10.1038/337664a0 (1989).
    Blackwood, E. M. & Eisenman, R. N. Max: A Helix-Loop-Helix Zipper Protein That Forms a Sequence-Specific DNA-Binding Complex with Myc. 251, 1211-1217, doi:doi:10.1126/science.2006410 (1991).
    Murre, C. et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537-544, doi:https://doi.org/10.1016/0092-8674(89)90434-0 (1989).
    Solomon, D. L., Amati, B. & Land, H. Distinct DNA binding preferences for the c-Myc/Max and Max/Max dimers. Nucleic acids research 21, 5372-5376, doi:10.1093/nar/21.23.5372 (1993).
    Safran, M. et al. in Practical Guide to Life Science Databases (eds Imad Abugessaisa & Takeya Kasukawa) 27-56 (Springer Nature Singapore, 2021).
    Stelzer, G. et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. 54, 1.30.31-31.30.33, doi:https://doi.org/10.1002/cpbi.5 (2016).
    SPZ1 spermatogenic leucine zipper 1 [ Homo sapiens (human) ], <https://www.ncbi.nlm.nih.gov/gene/84654#reference-sequences> (
    Hsu, S.-H., Shyu, H.-W., Hsieh-Li, H.-M. & Li, H. Spz1, a novel bHLH-Zip protein, is specifically expressed in testis. Mechanisms of Development 100, 177-187, doi:https://doi.org/10.1016/S0925-4773(00)00513-X (2001).
    Hsu, S. H., Hsieh-Li, H. M., Huang, H. Y., Huang, P. H. & Li, H. bHLH-zip transcription factor Spz1 mediates mitogen-activated protein kinase cell proliferation, transformation, and tumorigenesis. Cancer research 65, 4041-4050, doi:10.1158/0008-5472.Can-04-3658 (2005).
    Wang, L. T. et al. Transcription factor SPZ1 promotes TWIST-mediated epithelial–mesenchymal transition and oncogenesis in human liver cancer. Oncogene 36, 4405-4414, doi:10.1038/onc.2017.69 (2017).
    Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nature reviews. Molecular cell biology 6, 635-645, doi:10.1038/nrm1703 (2005).
    Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N. & Weintraub, H. Sequence-Specific DNA Binding by the c-Myc Protein. 250, 1149-1151, doi:doi:10.1126/science.2251503 (1990).
    Lüscher, B., Kuenzel, E. A., Krebs, E. G. & Eisenman, R. N. Myc oncoproteins are phosphorylated by casein kinase II. The EMBO journal 8, 1111-1119, doi:10.1002/j.1460-2075.1989.tb03481.x (1989).
    Gu, W., Cechova, K., Tassi, V. & Dalla-Favera, R. Opposite regulation of gene transcription and cell proliferation by c-Myc and Max. Proceedings of the National Academy of Sciences of the United States of America 90, 2935-2939, doi:10.1073/pnas.90.7.2935 (1993).
    Kretzner, L., Blackwood, E. M. & Eisenman, R. N. Myc and Max proteins possess distinct transcriptional activities. Nature 359, 426-429, doi:10.1038/359426a0 (1992).
    Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Molecular cell 10, 509-521, doi:10.1016/s1097-2765(02)00633-0 (2002).
    Gearhart, J., Pashos Evanthia, E. & Prasad Megana, K. Pluripotency Redux — Advances in Stem-Cell Research. New England Journal of Medicine 357, 1469-1472, doi:10.1056/NEJMp078126.
    Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35, 603-610, doi:10.1016/0092-8674(83)90092-2 (1983).
    Lau, L. F. & Nathans, D. Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proceedings of the National Academy of Sciences of the United States of America 84, 1182-1186, doi:10.1073/pnas.84.5.1182 (1987).
    Armelin, H. A. et al. Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature 310, 655-660, doi:10.1038/310655a0 (1984).
    Sorrentino, V., Drozdoff, V., McKinney, M. D., Zeitz, L. & Fleissner, E. Potentiation of growth factor activity by exogenous c-myc expression. Proceedings of the National Academy of Sciences of the United States of America 83, 8167-8171, doi:10.1073/pnas.83.21.8167 (1986).
    Cavalieri, F. & Goldfarb, M. Growth factor-deprived BALB/c 3T3 murine fibroblasts can enter the S phase after induction of c-myc gene expression. Molecular and cellular biology 7, 3554-3560, doi:10.1128/mcb.7.10.3554-3560.1987 (1987).
    Seoane, J., Le, H.-V. & Massagué, J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729-734, doi:10.1038/nature01119 (2002).
    Freytag, S. O., Dang, C. V. & Lee, W. M. Definition of the activities and properties of c-myc required to inhibit cell differentiation. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 1, 339-343 (1990).
    Lachman, H. M., Cheng, G. H. & Skoultchi, A. I. Transfection of mouse erythroleukemia cells with myc sequences changes the rate of induced commitment to differentiate. Proceedings of the National Academy of Sciences of the United States of America 83, 6480-6484, doi:10.1073/pnas.83.17.6480 (1986).
    Cartwright, P. et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132, 885-896, doi:10.1242/dev.01670 (2005).
    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676, doi:10.1016/j.cell.2006.07.024 (2006).
    Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc. Oncogene 26, 5564-5576, doi:10.1038/sj.onc.1210353 (2007).
    Amati, B., Littlewood, T. D., Evan, G. I. & Land, H. The c‐Myc protein induces cell cycle progression and apoptosis through dimerization with Max. The EMBO journal 12, 5083-5087, doi:https://doi.org/10.1002/j.1460-2075.1993.tb06202.x (1993).
    Mitchell, K. O. et al. Bax is a transcriptional target and mediator of c-myc-induced apoptosis. Cancer research 60, 6318-6325 (2000).
    Soucie, E. L. et al. Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Molecular and cellular biology 21, 4725-4736, doi:10.1128/mcb.21.14.4725-4736.2001 (2001).
    Eischen, C. M., Woo, D., Roussel, M. F. & Cleveland, J. L. Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Molecular and cellular biology 21, 5063-5070, doi:10.1128/mcb.21.15.5063-5070.2001 (2001).
    Askew, D. S., Ashmun, R. A., Simmons, B. C. & Cleveland, J. L. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6, 1915-1922 (1991).
    Baudino, T. A. et al. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes & development 16, 2530-2543, doi:10.1101/gad.1024602 (2002).
    Taub, R. et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proceedings of the National Academy of Sciences 79, 7837-7841, doi:doi:10.1073/pnas.79.24.7837 (1982).
    Dalla-Favera, R., Martinotti, S., Gallo, R. C., Erikson, J. & Croce, C. M. Translocation and Rearrangements of the c-<i>myc</i> Oncogene Locus in Human Undifferentiated B-Cell Lymphomas. Science (New York, N.Y.) 219, 963-967, doi:doi:10.1126/science.6401867 (1983).
    Vennstrom, B., Sheiness, D., Zabielski, J. & Bishop, J. M. Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42, 773-779, doi:10.1128/jvi.42.3.773-779.1982 (1982).
    Neel, B. G., Hayward, W. S., Robinson, H. L., Fang, J. & Astrin, S. M. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell 23, 323-334, doi:10.1016/0092-8674(81)90128-8 (1981).
    Payne, G. S. et al. Analysis of avian leukosis virus DNA and RNA in bursal tumours: viral gene expression is not required for maintenance of the tumor state. Cell 23, 311-322, doi:10.1016/0092-8674(81)90127-6 (1981).
    Hayward, W. S., Neel, B. G. & Astrin, S. M. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290, 475-480, doi:10.1038/290475a0 (1981).
    Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533-538, doi:10.1038/318533a0 (1985).
    Zhang, W., Sui, Y., Ni, J. & Yang, T. Insights into the Nanog gene: A propeller for stemness in primitive stem cells. International journal of biological sciences 12, 1372-1381, doi:10.7150/ijbs.16349 (2016).
    Keller, G. M. In vitro differentiation of embryonic stem cells. Current opinion in cell biology 7, 862-869, doi:10.1016/0955-0674(95)80071-9 (1995).
    Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. Journal of embryology and experimental morphology 87, 27-45 (1985).
    Burdon, T., Smith, A. & Savatier, P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends in Cell Biology 12, 432-438, doi:10.1016/S0962-8924(02)02352-8 (2002).
    Niwa, H. Molecular Mechanism to Maintain Stem Cell Renewal of ES Cells. Cell Structure and Function 26, 137-148, doi:10.1247/csf.26.137 (2001).
    Niwa, H., Miyazaki, J.-i. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics 24, 372-376, doi:10.1038/74199 (2000).
    Chambers, I. et al. Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell 113, 643-655, doi:https://doi.org/10.1016/S0092-8674(03)00392-1 (2003).
    Boiani, M. & Schöler, H. R. Regulatory networks in embryo-derived pluripotent stem cells. Nature Reviews Molecular Cell Biology 6, 872-881, doi:10.1038/nrm1744 (2005).
    Cavaleri, F. & Schöler, H. R. Nanog: A New Recruit to the Embryonic Stem Cell Orchestra. Cell 113, 551-552, doi:https://doi.org/10.1016/S0092-8674(03)00394-5 (2003).
    Barral, A. et al. Nanog regulates Pou3f1 expression at the exit from pluripotency during gastrulation. Biology open 8, doi:10.1242/bio.046367 (2019).
    Lin, T. et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7, 165-171, doi:10.1038/ncb1211 (2005).
    Noh, K. H. et al. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. The Journal of Clinical Investigation 122, 4077-4093, doi:10.1172/JCI64057 (2012).
    Noh, K. H. et al. Cancer Vaccination Drives Nanog-Dependent Evolution of Tumor Cells toward an Immune-Resistant and Stem-like Phenotype. Cancer research 72, 1717-1727, doi:10.1158/0008-5472.CAN-11-3758 %J Cancer Research (2012).
    Yu, A. Q. et al. TALEN-induced disruption of Nanog expression results in reduced proliferation, invasiveness and migration, increased chemosensitivity and reversal of EMT in HepG2 cells. Oncology reports 35, 1657-1663, doi:10.3892/or.2015.4483 (2016).
    Chiou, S. H. et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer research 70, 10433-10444, doi:10.1158/0008-5472.Can-10-2638 (2010).
    Liu, X. Y. et al. SPZ1 promotes deregulation of Bim to boost apoptosis resistance in colorectal cancer. Clinical science (London, England : 1979) 134, 155-167, doi:10.1042/cs20190865 (2020).
    Barzegar Behrooz, A., Syahir, A. & Ahmad, S. CD133: beyond a cancer stem cell biomarker. J Drug Target 27, 257-269, doi:10.1080/1061186x.2018.1479756 (2019).
    Wu, S. G. et al. miR-204 suppresses cancer stemness and enhances osimertinib sensitivity in non-small cell lung cancer by targeting CD44. Mol Ther Nucleic Acids 35, 102091, doi:10.1016/j.omtn.2023.102091 (2024).

    無法下載圖示 電子全文延後公開
    2029/08/14
    QR CODE