研究生: |
許瑋芷 Wei-Chih Hsu |
---|---|
論文名稱: |
數學表徵及數學自我效能對國小五年級學生 樣式推理學習成效之影響 The Effects of Type of Mathematical Representation and Mathematics Self-Efficacy on Fifth-Graders' Pattern Reasoning |
指導教授: |
陳明溥
Chen, Ming-Puu |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 樣式推理 、數學表徵 、虛擬教具 、數學自我效能 |
英文關鍵詞: | pattern reasoning, mathematical representation, virtual manipulative, mathematics self-efficacy |
論文種類: | 學術論文 |
相關次數: | 點閱:300 下載:27 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討不同的數學表徵及數學自我效能對國小學生樣式推理思考表現和數學學習態度之影響。研究樣本為雲林縣某國小五年級學生,共121 位。研究設計採因子設計之準實驗研究法,自變項包含數學表徵和數學自我效能,依數學表徵的不同將教材分為「圖形類型教材」、「數字類型教材」兩種,數學自我效能依據數學自我效能量表總得分,將學習者分為高、低數學自我效能兩組,參與者於教學實驗前接受測量。依變項為「樣式推理思考表現」及「數學學習態度」,樣式推理思考表現包括(1)數字序列推理;(2)圖形序列推理,數學學習態度為學習興趣、學習動機、數學焦慮三個面向。
研究結果發現:(1) 樣式推理學習過程中使用圖形類型教材,可以促進學習者樣式推理思考表現;(2) 運用虛擬教具於教學中,可以提升學習者數學學習態度;(3)高數學自我效能者透過圖形類型教材進行教學活動,數學學習態度較正向。本研究結果與建議可供國小數學教學與未來相關研究參考。
The purpose of this study was to investigate the effects of type of mathematical representation and mathematics self-efficacy on fifth graders’ pattern reasoning and mathematics attitudes. Participants were 121 fifth graders from four classes of an elementary school in Yunlin, Taiwan. A quasi-experimental design with factorial design was employed in the study. The independent variables were type of representation (figural representation vs. symbolic representation) and self-efficacy toward mathematics (high mathematics self-efficacy vs. low mathematics self-efficacy). The dependent variables were pattern reasoning performance, including (a) number patterns and (b) figure patterns, and mathematics attitudes, including (a) enjoyment, (b) motivation, and (c) anxiety.
The results showed that (a) the application of figural representation enhanced participants’ pattern reasoning performance, (b) the use of virtual manipulative for teaching mathematics enhanced students’ mathematics attitudes, and (c) students with higher mathematics self-efficacy obtained better mathematics attitudes.
中文部分
王智弘 (2005)。多方塊虛擬教具的開發與教學研究。國立交通大學理學院網路學習學程碩士論文,未出版,新竹市。
幼兒數學教材教法(何雪芳、陳彥文譯)(2003)。台北:華騰。(原著出版年:1998年)
李佩玟 (2005)。國小六年級學童發現數列樣式的推理歷程之分析研究。國立台北教育大學教育心理與諮商學系碩士論文,未出版,台北市。
吳知賢(1996)。歸因再訓練在國小班級情境實施之研究:錄影媒體教學實驗。國立政治大學教育研究所博士論文,未出版,台北市。
南一編輯部(2008)。九年一貫國民小學數學教師手冊第十冊(5下)。台南:南一。
洪明賢(2003)。國中生察覺數形規律的現象初探。國立台灣師範大學數學研究所碩士論文,未出版,台北市。
康軒編輯部 (2008a)。國小數學教師手冊第九冊(5上)。台北:康軒文教。
康軒編輯部 (2008b)。國小數學教師手冊第十二冊(6下)。台北:康軒文教。
張英傑 (2001)。發展九年一貫數學領域課程之省思。國民教育,41(6),29-38。
張國恩 (2002)。從學習科技的發展看資訊融入教學的內涵。北縣教育,41,16-25。
教育部 (2002)。國民中小學九年一貫課程暫行綱要。台北:教育部。
曹亮吉 (2003)。阿草的數學聖杯。台北市:天下遠見出版社。
陳滿 (2003)。國小五年級學童數學推理能力之研究-以 BBS 為工具。台中師範學院數學教育學系在職進修教學碩士學位班碩士論文,未出版,台中市。
黃芳玉 (2003)。國小六年級學生數學表徵能力與計算能力之研究。國立嘉義大學數學教育研究所碩士論文,未出版,嘉義市。
黃敏晃 (2000)。規律的尋求。台北市:心理出版社。
彭嘉妮 (2007)。國小六年級學童在分數符號、小數符號和圖形表徵三者間轉譯表現之研究。國立屏東教育大學數理教育研究所碩士論文,未出版,屏東市。
萬志祥 (2004)。資訊融入教學的省思與推動。北縣教育,50,42-45。
楊瑞智 (1994)。國小五六年級不同能力學童數學解題的思考過程。國立台灣師範大學科學教育研究所碩士論文,未出版,台北市。
劉信雄 (1992)。國小學生認知風格、學習策略、自我效能與學業成就之研究。國立政治大學教育研究所博士論文,未出版,台北市。
鄭千佑 (2008)。虛擬教具對國小學生等值分數彈性思考表現之影響。國立台灣師範大學資訊教育研究所碩士論文,未出版,台北市。
數學學習 (劉秋木譯)(1990)。台北:五南。(原著出版年:1984年)
蔡志仁 (1999)。動態連結多重表徵視窗環境下橢圓學習之研究。國立台灣師範大學數學研究所碩士論文,未出版,台北市。
翰林編輯部 (2008)。數學教學指引研究篇五年級下學期。台北:翰林。
蔣治邦 (1994)。由表徵觀點探討實驗教材數與計算活動的設計。國立嘉義師院八十二學年度數學教育研討會論文暨會議實錄彙編。
應雅鈴 (2007)。應用數學報系統發展國小數感教學模組之行動研究。國立台北教育大學數學教育研究所碩士論文,未出版,台北市。
謝孟珊 (2000)。以不同表徵表示方程式的未知數對國二學生解題表現。國立台北師範學院數理教育研究所碩士論文,未出版,台北市。
羅素真 (1996)。問題表徵與問題解決。國立屏東師院學報,9,149-176。
龔玉春 (2003)。國小教師認知教學策略與學生數學成就、數學自我效能之相關研究。屏東師範學院心理輔導教育研究所碩士論文,未出版,屏東市。
龔心怡 (2006)。是知覺還是信念?數學自我概念、數學自我效能之區辨效度檢驗及兩者與數學學習成就關係之縱貫研究I。行政院國家科學委員會專題研究計畫成果報告(編號:NSC95-2521-S-018-002)。執行單位:國立彰化師範大學。
英文部分
Ainsa, T. (1999). Success of using technology and manipulatives to introduce numerical problem solving skills in monolingual/bilingual early childhood classrooms. Journal of Computers in Mathematics and Science, 18(4), 361-369.
Ainsworth, S. (2006). DeFT: A Conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.
Anjum, R. (2006). The impact of self-efficacy on mathematics achievement of primary school children. Pakistan Journal of Psychological Research, 21(3), 61-78.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
Bishop, J. (2000). Linear geometric number patterns: middle school students’ strategies. Mathematics Education Research Journal, 12(2), 107-126.
Bouffard-Bouchard, T. (1989). Influence of self-efficacy of performance in a cognitive task. Journal of Social Psychology, 130(3), 353-363.
Brenner, M. E., Herman, S., Ho, H. Z. & Zimmer, J. M. (1999). Cross-National comparison of representational competence. Journal for Research in Mathematics Education, 30(5), 541-547.
Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S., & Webb, D. (1997). Learning by understanding: The role of multiple representations in learning algebra. American Educational Research Journal, 34, 663-689.
Bruner, J. S.(1966). Toward a theory of instruction. Cambridge, MA: Harvard University.
Cai, J. (2001). Improving mathematics learning lessons from Cross-National studies of chinese and U.S. students. Phi Delta Kappan, 83, 400-404.
Char, C. A. (1989). Computer graphics feltboard: New soft-ware approaches for young children’s mathematical exploration. San Francisco: American Education Research Association.
Clement, D. H. (1999). Concrete manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45-60.
Cramer K. A., Post T. R., & delMas R. C. (2002). Initial fraction learning by fourth- and fifth-grade students: A comparison of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33(2), 111-144.
David Young (2006).Virtual manipulatives in mathematics education (2006, June 13) . Retrieved November 11, 2008, from the World Wide Web: http://plaza.ufl.edu/youngdj/talks/vms.htm
Dreyfus, T. & Eisenberg, T. (1996). On different facets of mathematical thinking. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp.253-284). Mahwah, NJ: Erlbaum.
Fennell, F. & Rowan, T. (2001). Representation: An important process for teaching and learning Mathematics. Teaching Children Mathematics, 7(4), 288-292.
Fernandez, M. & Anhalt, C. (2001). Transition toward algebra. Mathematics Teaching in the Middle School, 7(4), 237-241.
Godding, P. R. & Glasgow, R. E. (1985). Self-efficacy and outcome expectancy as predictors of controlled smoking status. Cognitive Therapy and Research, 9(1), 23-31.
Hackett, G. & Betz, N. E. (1989). An exploration of the mathematics self-efficacy mathematics performance correspondence. Journal for Research in Mathematics Education, 20(3), 261-273.
Heddens, J. W. (1984). Today,s mathematics. (5th ed.). Chicago: Science Research Associates.
Herbert, K. & Brown, R. H. (1997). Patterns as tools for algebraic reasoning. Teaching Children Mathematics, 3(6), 340-344.
Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C., Wearne, D., Murray, H., Olivier, A., & Human, P. (1997). Making sense: Teaching and learning mathematics with understanding. Portsmouth: NH
Izydorczak, A. (2003). A study of virtual manipulatives for elementary mathematics. Unpublished doctoral dissertation, State University of New York-Buffalo.
Kaput, J. J. (1987). Representation systems and mathematics. In Janvier, C. (Ed.), Problems of representation in teaching and learning of mathematics (pp. 159-195). Hillsdale, NJ: Lawrence Erlbaum.
Kaput, J. J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp.515-556). Reston, VA: National Council of Teachers of Mathematics.
Kong, S. C. & Kwok, L. F. (2005). A cognitive tool for teaching the addition/ subtraction of common fractions: A model of affordances. Computers and Education, 45(2), 245-265.
Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier, (Ed.), Problems of representations in the teaching and learning of mathematics (pp. 33-40). Hillsdale, NJ: Lawrence Erlbaum.
Lewis, A. B. (1989). Training students to represent arithmetic word problems. Journal of Educational Psychology, 81, 521-531
Lewis, A. B. & Mayer, R. E. (1987). Students’ miscomprehension of relational statements in arithmetic word problems. Journal of Educational Psychology, 79(4), 363-371.
Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: W. H. Freeman and Company.
Melanie, H., Diane, S. T., & John, T. (1998). Children's strategies with number patterns. Educational Studies, 24(3), 315-331.
Moyer, P., Bolyard, J., & Spikell, M. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372-377.
Moyer, P., Niezgoda, D., & Stanley, M. (2005). Young children’s use of virtual manipulatives and other forms of mathematical representation. In W. Masalski & P. Elliott (Eds.), Technology-supported mathematics learning environments (pp. 17-34). Reston, VA: NCTM.
National Council of Teachers of Mathematics (2000). The principles and standards for school mathematics. Reston, VA:NCTM.
Olkun, S. (2003).Comparing computer versus concrete manipulatives in learning 2D geometry. The Journal of Computers in Mathematics and Science Teaching, 22(1), 43-56.
Olkun, S., Altun, A., & Smith, G. (2005). Computers and 2D geometric learning of Turkish fourth and fifth graders. British Journal of Educational Technology, 36, 317-326.
Owen, A. (1995). In search of the unknown: A review of primary algebra. In J. Anghileri (Ed.), Children´s mathematical thinking in the primary years: Perspectives on children´s learning. London: Cassell.
Reimer, K. & Moyer, P. S. (2005). Third-graders learn about fractions using virtual manipulatives: a classroom study. The Journal of Computers in Mathematics and Science Teaching, 24(1), 5-25.
Rivera, F. & Becker, J. R. (2008). Middle school children’s cognitive perceptions of constructive and deconstructive generalizations involving linear figural patterns. ZDM: International Journal in Mathematics Education, 40, 65-82.
Schunk, D. H. (2007). Learning theories: An educational perceptive (5th ed.). NJ: Prentice-Hall.
Shade, D. & Watson, J. A. (1990). Computers in early education: Issues put to rest, theoretical links to sound practice, and the potential contribution of microworlds. Journal of Educational Computing Research, 6(4), 375-392.
Sherer, M. & Maddux J. (1982). The self-efficacy scale: Construction and validation. Psychological Reports, 51(2), 663-671.
Siegle, D., & McCoach, D. B. (2007). Increasing student mathematics self-efficacy through teacher training. Journal of Advanced Academics, 18, 278–312.
Steen, K., Brooks, D., & Lyon, T. (2006). The impact of virtual manipulatives on first grade geometry instruction and learning. Journal of Computers in Mathematics and Science Teaching, 25(4), 373-391.
Stevens, T., Olivárez, A., Jr., & Hamman, D. (2006). The role of cognition, motivation, and emotion in explaining the mathematics achievement gap between Hispanic and White students. Hispanic Journal of Behavioral Sciences, 28, 161–186.
Suh, J., Moyer, P. S., & Heo, H. (2005). Examining technology uses in the classroom: students developing fraction sense by using virtual manipulative concept tutorials. Journal of Interactive Online Learning, 3(4), 1-21.
Threlfall, J. (1999). Repeating patterns in the early primary years. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 18-30). Landon: Cassell.
Wills, G. B. & Fuson, K. C. (1988). Teaching children to use schematic drawings to solve addition and subtraction word problems. Journal of Educational Psychology, 80, 192-201.
Woolfolk, A. E. & Hony, W. K. (1990). Prospective teachers’ sense of efficacy and beliefs about control. Journal of Educational Psychology, 82(1), 81-91.
Yuan, Y. (2005). Design of virtual manipulatives for mathematical explorations using Flash ActionScript. Asia Technology Conference in Mathematics, 182-193.
Zimmermann, W. & Cunningham, S.(1991). What is mathematical visualization? In W. Zimmermann & S. Cunningham (Eds.), Visualization in teaching and learning mathematics. Washington, DC: The Mathematical Association of America.