簡易檢索 / 詳目顯示

研究生: 安培
Ram Ambre
論文名稱: 以簡易且低成本的多掛載基之紫質於作為高效率之太陽能電池光敏染料
Facile and Low-cost Multi-anchoring Porphyrin Dyes as Efficient Sensitizers for Dye-Sensitized Solar Cells
指導教授: 洪政雄
Hung, Chen-Hsiung
姚清發
Yao, Ching-Fa
學位類別: 博士
Doctor
系所名稱:
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 248
中文關鍵詞: 太陽能光敏染料鉗合效應雙重推拉電子基低成本多掛載基紫質鋅錯合物
英文關鍵詞: Dye-sensitized solar cells, binding effect, double donor acceptor, low-cost, multi-anchored, Zn(II)oxaporphyrins
論文種類: 學術論文
相關次數: 點閱:207下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以簡易且低成本的多掛載基之紫質於作為高效率之太陽能電池光敏染料
    太陽能光敏染料技術為現今替代能源技術當中相當具有潛力的領域,現今有許多的研究學者都投入大量的心力專研於開發高效率的太陽能染料電池。此論文亦致力於設計並合成可以簡易的方法且低成本合成之紫質太陽能光敏染料。
    本論文共分成六章。第一章為太陽能光敏染料電池之基礎介紹。第二到五章則是關於實驗結果之討論。而最後一章則為所有結果與討論之總結。
    在第一章裡,為了要說明太陽能光敏染料的工作原理,其各個組成部位,譬如工作電極,光敏染料,電解液,對電極均有被敘述討論。各種影響效率的參數亦有所討論。並且目前此領域的發展及趨勢也有相關的文獻討論。對於各種高效率的釕,紫質,和有機染料也都有做文獻的探討。
    在第二章節裡,我們合成並有系統的研究了一系列的紫質光敏染料,如 Zn3S1A, trans-Zn2S2A, cis-Zn2S2A, 以及 Zn1S3A。關於這些染料上 thienyl 和 p-carboxyphenyl 取代基的數目以及位置對於光電效應的影響,我們亦有系統性的討論。在這些染料中,轉換效率的Zn1S3A (3.01%) 和 cis-Zn2S2A (2.50%) 的轉換效率高於 trans-Zn2S2A (1.80%) 和 Zn3S1A (0.20%)。這結果闡明了關於 thienyl 和 p-carboxyphenyl 取代基的數目以及位置對於染料之電子結構,電化學性質,以及光電性質之重大影響。
    第三章討論的主要是包含了由兩個推電子官能基和兩個拉電子所組成的紫質染料,其中包括 cis-Zn2T2A, cis-Zn2U2A, cis-Zn2S2A, cis-Zn2TH2A, cis-Zn2TC2A, cis-Zn2BC2A 和 cis-Zn2TPA2A 。這些由兩組推拉電子基所組成的紫質染料顯示出了當推拉電子基有所不同時,其電子注入電極的效率亦不同。此些染料中 cis-Zn2BC2A 擁有最高的效率, 4.07%。此外,此類由兩組推拉電子基所組成的染料表現出比單一拉電子基染力更高的化合物穩定性。
    第四章中,我們合成了新的紫質染料Zn1T3A, Zn1U3A, Zn1S3A, Zn1TH3A, Zn1TC3A, Zn1BC3A 和 Zn1TPA3A 其在 meso 位置擁有三個 p-carboxyphenyl 以及一個推電子基。此些化合物的電化學和能階分布結果顯示他們適合用於太陽能光敏染料之研究。由衰減全反射紅外線光譜我們得知,此些紫質以兩個 p-carboxyphenyl 基掛載於二氧化鈦表面。儘管只擁有一個推電子基,但Zn1TPA3A (5.26%) 和 Zn1TH3A (5.36%) 確有筆掛載兩組推拉電子基的紫質擁有更高的效率。
    在第五章中主要為討論新的單氧紫質及其鋅錯合物的合成,及其光譜鑑定;包括可見光光譜,質譜,核磁共振光譜,晶體。雖然此些單氧紫質及其鋅錯合物的效率非常的低,但他們讓環修飾的紫質類更往太陽能光敏染料跨進了一步。
    最後一章即是概括並總結前述五章節。在所合成的染料中,效率的分布有低 (0.20% ,Zn3S1A) 有高 (5.36% ,Zn1TH3A)。我們的染料主要的優勢乃在於低成本,簡易的合成,以及較好的穩定性。此論文主要也是指導如何思考並設計此類低成本,高效率,且穩定的染料。

    Facile and Low-cost Multi-anchoring Porphyrin Dyes as Efficient Sensitizers for Dye-Sensitized Solar cells
    Abstract
    Dye-sensitized solar cell (DSSC) technology is a potential game changing player in today’s solar energy related discipline. Nowadays tremendous effort has been applied for the development of highly efficient DSSCs. This thesis deals with the design and synthesis of facile, straightforward, scalable, low-cost and stable porphyrin sensitizers for DSSCs.
    The Thesis is divided into six chapters. The first chapter includes introduction of DSSC, Chapter 2‒5 belongs to author’s original work and thesis is concluded in last chapter.
    The first chapter deals with introduction various components of DSSC such as working electrode, sensitizers, electrolyte, and counter electrode are described with the explanation of working principle of DSSC. General trends and current developments in the field are also highlighted with the help of recent literature. The common parameters used to characterize the DSCC, Incident Photon to current Conversion Efficiency (IPCE), open circuit voltage (VOC), short circuit current (JSC), fill factor (FF) and solar to electric power conversion efficiency (η) are described. Highly efficient ruthenium, porphyrin, and organic dyes are sorted out with the help of recent literature survey.
    In second chapter a series of porphyrins 3S1A, trans-2S2A, cis-2S2A, and 1S3A were synthesized and studied systematically. The effect of number and the position of thienyl and p-carboxyphenyl substituents of the zinc porphyrin dyes on the photovoltaic properties have been explained systematically. The solar to electric power conversion efficiency (η) of 1S3A (3.01%) and cis-2S2A (2.50%) is superior than trans-2S2A (1.80%) and 3S1A (0.20%). The result elucidates significant effects of position and number of thienyl and p-carboxyphenyl group on electronic structure, electrochemical properties, and photovoltaic properties.
    2D-π-2A framework consisting cis-2T2A, cis-2U2A, cis-2S2A, cis-2TH2A, cis-2TC2A, cis-2BC2A, and cis-2TPA2A double donor acceptor porphyrin sensitizers has been synthesized in the third chapter. The synthesized 2D-π-2A porphyrin applied in DSSC displays tunable interfacial electron transfer characteristics with its two electron donating and two electron anchoring groups on its meso position. The highest efficiency 4.07% has been achieved for cis-2BC2A. The photostability of studied porphyrins is higher compare to their mono-anchored porphyrin analogs.
    The fourth chapter contains synthesis and characterization of three anchoring groups possessing novel porphyrin sensitizers 1T3A, 1U3A, 1S3A, 1TH3A, 1TC3A, 1BC3A, and 1TPA3A and its application in DSSC. Electrochemical properties and energy level diagram demonstrate the feasibility of studied dyes for DSSC. ATR-FTIR spectra of porphyrins on TiO2 shows two p-carboxyphenyl groups attached on conducting band (CB). The highest efficiency 5.26% for 1TPA3A and 5.36% for 1TH3A has been obtained.
    In the fifth chapter newly designed oxaporphyrins and their Zn(II) complexes were synthesized and well characterized by optical spectroscopy, high resolution mass spectrometry, NMR spectroscopy, temperature variable NMR, 2DNMR, and X-ray crystallography. Newly designed oxaporphyrins and Zn(II)oxaporphyrins with terminal carboxylic acid functional groups is a step forward toward DSSC related research areas.
    The last chapter contains concluding remarks. Starting from lowest efficiency 0.20% (3S1A) to highest 5.36% (1TH3A) has been achieced with cost effective synthesis and thermal stability. The thesis has been devoted to formulate the guideline for the development of cost-effective, highly efficient and stable sensitizers for DSSC.

    Acknowledgments II Abbreviations IV Abstract VI 1 Introduction 1.1 Introduction 1 1.2 The Configuration of Dye-Sensitized Solar Cell 2 1.3 Working Electrode 3 1.4 Sensitizers 3 1.5 Electrolyte 7 1.6 Counter Electrode 8 1.7 Principles of Operation 8 1.8 Incident Photon to Current Conversion Efficiency (IPCE) 8 1.9 Open Circuit Photovoltage (VOC) 8 1.10 Short Circuit Photocurrent (JSC) 9 1.11 Fill Factor (FF) 9 1.12 Solar to Electric Conversion Efficiency (η) 9 1.13 Aim of the Thesis 10 1.14 References 11 2 Binding and Electron-Mediation Effects 2.1 Introduction 14 2.2 Experimental Section 16 2.3 Synthesis of Sensitizers 18 2.4 Optical Properties 25 2.5 Electrochemical Properties and Energy Levels 28 2.6 Fluorescence Lifetime Measurements 29 2.7 Density Functional Theory Calculations 30 2.8 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy 31 2.9 Dye Loading Measurements 33 2.10 Photovoltaic Measurements 33 2.11 Conclusion 37 2.12 References 38 2.13 Supporting Information 40 3 Double Donor Acceptor Sensitizers 3.1 Introduction 65 3.2 Experimental Section 66 3.3 Synthesis of Sensitizers 68 3.4 Optical Properties 78 3.5 Electrochemical Properties and Energy Levels 80 3.6 Density Functional Theory Calculations 82 3.7 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy 84 3.8 Photovoltaic Measurements 85 3.9 Stability Study 89 3.10 Conclusion 90 3.11 References 90 3.12 Supporting Information 91 4 Three Anchoring Group Possessing Porphyrin Sensitizers 4.1 Introduction 136 4.2 Experimental Section 137 4.3 Synthesis of Sensitizers 137 4.4 Optical Properties 144 4.5 Electrochemical Properties and Energy Levels 147 4.6 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy 148 4.7 Density Functional Theory Calculations 150 4.8 Photovoltaic Measurements 152 4.9 Stability Study 156 4.10 Comparison between 2D-π-2A and 1D-π-3A porphyrins 158 4.11 Conclusion 158 4.12 References 159 4.13 Supporting Information 160 5 Oxaporphyrins 5.1 Introduction 197 5.2 Synthesis 198 5.3 Photovoltaic Measurements 207 5.4 Experimental Section 208 5.5 Conclusion 219 5.6 References 219 5.7 Supporting Information 221 6 Concluding Remarks 247

    References
    (1) O’Regan, B.; Gratzel, M. Nature 1991, 353, 737.
    (2) Lin, C.-J.; Yu, W.-Y.; Chien, S.-H. J. Mater. Chem. 2010, 20, 1073.
    (3) Bendall, J. S.; Etgar, L.; Tan, S. C.; Cai, N.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M.; Welland, M. E. Energy Environ. Sci 2011, 4, 2903.
    (4) Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J. Nano Lett. 2007, 7, 2183.
    (5) Li, L.-L.; Diau, E. W.-G. Chem. Soc. Rev. 2013, 42, 291.
    (6) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
    (7) Campbell, W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W. Coordin. Chem. Rev. 2004, 248, 1363.
    (8) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Ed. 2009, 48, 2474.
    (9) Ooyama, Y.; Harima, Y. Eur. J. Org. Chem. 2009, 2009, 2903.
    (10) Imahori, H.; Umeyama, T.; Ito, S. Acc. Chem. Res. 2009, 42, 1809.
    (11) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
    (12) Yu, Q.; Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; Zhang, M.; Wang, P. ACS Nano 2010, 4, 6032.
    (13) Klein, C.; Nazeeruddin, M. K.; Di Censo, D.; Liska, P.; Grätzel, M. Inorg. Chem. 2004, 43, 4216.
    (14) Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Humphry-Baker, R.; Comte, P.; Aranyos, V.; Hagfeldt, A.; Nazeeruddin, M. K.; Grätzel, M. Adv. Mater. 2004, 16, 1806.
    (15) Karthikeyan, C. S.; Wietasch, H.; Thelakkat, M. Adv. Mater. 2007, 19, 1091.
    (16) Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Grätzel, M. Adv. Mater. 2003, 15, 2101.
    (17) Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Gratzel, M. Chem. Commun. 2002, 2972.
    (18) Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Gratzel, M. Nat. Mater. 2003, 2, 402.
    (19) Martinez-Diaz, M. V.; de la Torre, G.; Torres, T. Chem. Commun. 2010, 46, 7090.
    (20) Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K. C.; Schmidt-Mende, L.; Nazeeruddin, M. K.; Wang, Q.; Grätzel, M.; Officer, D. L. J. Phys. Chem. C 2007, 111, 11760.
    (21) Wu, S.-L.; Lu, H.-P.; Yu, H.-T.; Chuang, S.-H.; Chiu, C.-L.; Lee, C.-W.; Diau, E. W.-G.; Yeh, C.-Y. Energy Environ. Sci 2010, 3, 949.
    (22) Lee, C.-W.; Lu, H.-P.; Lan, C.-M.; Huang, Y.-L.; Liang, Y.-R.; Yen, W.-N.; Liu, Y.-C.; Lin, Y.-S.; Diau, E. W.-G.; Yeh, C.-Y. Chem. Eur. J. 2009, 15, 1403.
    (23) Hsieh, C.-P.; Lu, H.-P.; Chiu, C.-L.; Lee, C.-W.; Chuang, S.-H.; Mai, C.-L.; Yen, W.-N.; Hsu, S.-J.; Diau, E. W.-G.; Yeh, C.-Y. J. Mater. Chem. 2010, 20, 1127.
    (24) Pasunooti, K. K.; Song, J.-L.; Chai, H.; Amaladass, P.; Deng, W.-Q.; Liu, X.-W. J. Photochem. Photobiol. A 2011, 218, 219.
    (25) Bessho, T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Grätzel, M. Angew. Chem. Int. Ed. 2010, 49, 6646.
    (26) Lu, H.-P.; Mai, C.-L.; Tsia, C.-Y.; Hsu, S.-J.; Hsieh, C.-P.; Chiu, C.-L.; Yeh, C.-Y.; Diau, E. W.-G. Phys. Chem. Chem. Phys. 2009, 11, 10270.
    (27) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.
    (28) Hara, K.; Wang, Z.-S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S. J. Phys. Chem. B 2005, 109, 15476.
    (29) Wong, B. M.; Cordaro, J. G. J. Chem. Phys. 2008, 129, 214703.
    (30) Wang, Z.-S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C 2008, 112, 17017.
    (31) Kandavelu, V.; Huang, H.-S.; Jian, J.-L.; Yang, T. C. K.; Wang, K.-L.; Huang, S.-T. Solar Energy, 2009, 83, 574.
    (32) Wang, Z. S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 19, 1138.
    (33) Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Gratzel, M. Chem. Commun. 2008, 5194.
    (34) Kuang, D.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M. Angew. Chem. Int. Ed. 2008, 47, 1923.
    (35) Howie, W. H.; Claeyssens, F.; Miura, H.; Peter, L. M. J. Am. Chem. Soc. 2008, 130, 1367.
    (36) Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218.
    (37) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18, 1202.
    (38) Li, Q.; Lu, L.; Zhong, C.; Shi, J.; Huang, Q.; Jin, X.; Peng, T.; Qin, J.; Li, Z. J. Phys. Chem. B 2009, 113, 14588.
    (39) Yang, C.-H.; Liao, S.-H.; Sun, Y.-K.; Chuang, Y.-Y.; Wang, T.-L.; Shieh, Y.-T.; Lin, W.-C. J. Phys. Chem. C 2010, 114, 21786.
    (40) Teng, C.; Yang, X.; Li, S.; Cheng, M.; Hagfeldt, A.; Wu, L.-z.; Sun, L. Chem. Eur. J. 2010, 16, 13127.
    (41) Barea, E. M.; Zafer, C.; Gultekin, B.; Aydin, B.; Koyuncu, S.; Icli, S.; Santiago, F. F.; Bisquert, J. J. Phys. Chem. C 2010, 114, 19840.
    (42) Zhang, X.-H.; Cui, Y.; Katoh, R.; Koumura, N.; Hara, K. J. Phys. Chem. C 2010, 114, 18283.
    (43) Li, Q.; Lu, L.; Zhong, C.; Shi, J.; Huang, Q.; Jin, X.; Peng, T.; Qin, J.; Li, Z. J. Phy. Chem. B 2009, 113, 14588.
    (44) Zhang, X.-H.; Wang, Z.-S.; Cui, Y.; Koumura, N.; Furube, A.; Hara, K. J. Phys. Chem. C 2009, 113, 13409.
    (45) Unger, E. L.; Ripaud, E.; Leriche, P.; Cravino, A.; Roncali, J.; Johansson, E. M. J.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2010, 114, 11659.
    (46) Liang, Y.; Peng, B.; Chen, J. J. Phys. Chem. C 2010, 114, 10992.
    (47) Marinado, T.; Nonomura, K.; Nissfolk, J.; Karlsson, M. K.; Hagberg, D. P.; Sun, L.; Mori, S.; Hagfeldt, A. Langmuir 2009, 26, 2592.
    (48) Tian, H.; Yang, X.; Pan, J.; Chen, R.; Liu, M.; Zhang, Q.; Hagfeldt, A.; Sun, L. Adv. Funct. Mater. 2008, 18, 3461.
    (49) Li, G.; Jiang, K.-J.; Li, Y.-F.; Li, S.-L.; Yang, L.-M. J. Phys. Chem. C 2008, 112, 11591.
    (50) Qin, P.; Zhu, H.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. J. Am. Chem. Soc. 2008, 130, 8570.
    (51) Wang, Z.-S.; Li, F.-Y.; Huang, C.-H.; Wang, L.; Wei, M.; Jin, L.-P.; Li, N.-Q. J. Phys. Chem. B 2000, 104, 9676.
    (52) Chen, Y.-S.; Li, C.; Zeng, Z.-H.; Wang, W.-B.; Wang, X.-S.; Zhang, B.-W. J. Mater. Chem. 2005, 15, 1654.
    (53) Yao, Q.-H.; Shan, L.; Li, F.-Y.; Yin, D.-D.; Huang, C.-H. New J. Chem. 2003, 27, 1277.
    (54) Lee, H.; Leventis, H. C.; Moon, S.-J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735.
    (55) Burke, A.; Schmidt-Mende, L.; Ito, S.; Gratzel, M. Chem. Commun. 2007, 234.
    (56) Yum, J.-H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.; Nüesch, F.; De Angelis, F.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2007, 129, 10320.
    (57) Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P. Chem. Mater. 2010, 22, 1915.
    (58) Zhou, D.; Yu, Q.; Cai, N.; Bai, Y.; Wang, Y.; Wang, P. Energy Environ. Sci 2011, 4, 2030.
    (59) Tsao , H. N.; Yi , C.; Moehl, T.; Yum, J.-H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Chem. Sus. Chem. 2011, 4, 591.
    (60) Feldt, S. M.; Gibson, E. A.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A. J. Am. Chem. Soc. 2010, 132, 16714.
    (61) Daeneke, T.; Kwon, T.-H.; Holmes, A. B.; Duffy, N. W.; Bach, U.; Spiccia, L. Nat. Chem. 2011, 3, 211.
    (62) Garcia-Iglesias, M.; Yum, J.-H.; Humphry-Baker, R.; Zakeeruddin, S. M.; Pechy, P.; Vazquez, P.; Palomares, E.; Gratzel, M.; Nazeeruddin, M. K.; Torres, T. Chem. Sci. 2011, 2, 1145.

    下載圖示
    QR CODE