研究生: |
張煜 Chang,Yu |
---|---|
論文名稱: |
運算思維視覺化對國中生程式學習的影響 The Influence of Computational Thinking Visualization on Programming Learning in Junior High School Students |
指導教授: |
李忠謀
Lee, Chung-Mou |
口試委員: |
李忠謀
Lee, Chung-Mou 柯佳伶 Koh, Jia-Ling 劉寧漢 Liu, Ning-Han |
口試日期: | 2025/01/14 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 視覺化 、流程圖 、運算思維 、學習成效 |
英文關鍵詞: | Visualization, Flowcharts, Computational Thinking, Learning Outcomes |
研究方法: | 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202500279 |
論文種類: | 學術論文 |
相關次數: | 點閱:56 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代教育中,資訊科技領域的重要程度日漸提升,學生除了需要掌握程式設計的基礎技能外,運算思維的培養及利用科技工具解決問題並將其應用到其他領域亦是學生們需要掌握的能力。然而,對於程式的初學者而言,許多抽象概念難以理解。因此本研究旨在探討針對學習程式設計的過程中,使用視覺化工具輔助教學,將抽象觀念轉為具體畫面與流程,對於學習運算思維及程式設計的影響。
本研究以國中七年級學生為對象,分為對照組與實驗組進行教學實驗。針對運算思維的培養,對照組採用紙本學習單繪製流程圖,實驗組則採用電腦視覺化工具繪製流程圖,可以執行流程圖與呈現執行步驟,程式設計皆使用 Scratch 進行練習。除了教學工具的考慮,本研究針對變數、選擇結構、重複結構等較抽象的觀念進行課程設計,經過一學年的教學後,再經由前測與後測的成績進行數據分析。
為探討不同教學策略的影響,兩組再各自細分成兩組,一組先集中進行四週運算思維的培養後再進行四週的程式設計訓練,另一組則是相同觀念以運算思維及程式設計交替進行教學的模式,以探討在不同教學策略下,視覺化教學對於學生學習成效的影響。研究結果顯示,使用視覺化工具的組別經過教學後,分數顯著低於對照組,與實驗的假設與預期不符,因此結合教學現場的觀察與教師回饋進行質性分析,並提出建議使視覺化教學對運算思維與程式設計學習的潛力得以發揮。
綜合以上觀點,本研究建議在程式設計教學中結合視覺化工具與運算思維訓練的策略時,應另設計能維持專注力的課堂規範,避免因資訊工具的採用導致學生致行上網的負面影響。
As information technology plays an increasingly vital role in education, students must acquire programming skills and computational thinking for problem-solving. However, beginners often face challenges in grasping abstract programming concepts. This study investigates how computational thinking visualization in programming education trans-forms abstract ideas into concrete visuals, enhancing students' understanding of compu-tational thinking and programming.
The study involved seventh-grade students, divided into a control group and an experi-mental group. To develop computational thinking, the control group created flowcharts using paper worksheets, while the experimental group used computer visualization tools to design and execute flowcharts. Both groups used Scratch for programming practice. The curriculum covered abstract concepts such as variables, conditionals, and loops, with student progress assessed through pre-tests and post-tests.
To investigate the effects of different teaching strategies, each group was further divid-ed into two subgroups. One subgroup concentrated on computational thinking training for four weeks before transitioning to four weeks of programming instruction. The other subgroup alternated between computational thinking and programming lessons. The findings revealed that, contrary to expectations, the experimental group using visual tools scored significantly lower after the teaching period than the control group. This unexpected outcome was examined through qualitative analysis based on classroom ob-servations and teacher feedback, leading to recommendations for maximizing the poten-tial of visual tools in teaching computational thinking and programming.
In conclusion, this study suggests that when integrating visual tools with computational thinking training in programming instruction, rigorous curriculum design and clear class-room rules are necessary to prevent adverse effects on learning outcomes.
余民寧(2012)。國家教育研究院辭書-試題反應理論。https://pedia.cloud.edu.tw/Entry/Detail/?title=試題反應理論&search=試題反應理論
邱柏升、鍾華栩(2021)。國中小學實施程式教育之問題與建議。台灣教育研究期刊,2(1),325-334。
范斯淳、林弘昌(2010)。問題中的問題:再探生活科技問題解決教學策略之實施現況-以自由落紙教學活動為例。工業科技教育學刊,(2),17-29。https://doi.org/10.6306/JITE.2010.2.3
郭玉霞(2000)。國家教育研究院辭書-起點行為。https://terms.naer.edu.tw/detail/2e14c79155cbd9ee82e3f11fceb5c009/?startswith=zh&seq=1
教育部(2018)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校─科技領域。https://www.k12ea.gov.tw/Tw/Common/SinglePage?filter=11C2C6C1-D64E-475E-916B-D20C83896343
陳奕璇(2023)。108課綱「科技資訊與媒體素養」的教學實踐與挑戰。臺灣教育評論月刊,12(3),69-72。
楊喻文(2022)。 以解決問題為導向之運算思維到程式設計教學研究。臺灣師範大學資訊工程學系學位論文, 2022, 1-93。
盧玟燕、范斯淳(2019)。國中資訊科技導入APCS檢定之可行性與評量策略分析。工業科技教育學刊,(12),67-81。https://doi.org/10.6306/JITE.201912_(12).0005
Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and instruction, 16(5), 389-400.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Baecker, R., DiGiano, C., & Marcus, A. (1997). Software visualization for debugging. Communications of the ACM, 40(4), 44–54. https://doi.org/10.1145/248448.248458
Bae, Y., Fulmer, G. W., Hand, B. M. (2021). Developing latent constructs of dialogic interaction to examine the epistemic climate: Rasch modeling. School Science and Mathematics, 121(3), 164–174. https://onlinelibrary.wiley.com/doi/10.1111/ssm.12460
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord, & M. R. Novick (Eds.), Statistical Theories of Mental Test Scores (pp. 397–479). Addison-Wesley.
Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a micro-computer environment. Applied Psychological Measurement, 6, 431–444. 151 https://doi.org/10.1177/014662168200600405
Chalmers, R. P. (2012). mirt: a multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 1–29. https://doi.org/10.18637/jss.v048.i06
Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning of computer programming: A literature review. Contemporary Educational Tech-nology, 12(2), ep272. https://doi.org/10.30935/cedtech/8247
Derus, S. R. M., & Ali, A. M. (2012). Difficulties in learning programming: Views of students. In 1st International Conference on Current Issues in Education (ICCIE 2012) (pp. 74-79).
Google. (2025). Blockly games. https://blockly-games.appspot.com/about?lang=en
Greg Lee, Yi-Ling Wu, & Jia-Yi Chen (2024). Effect of New Computing Curriculum: Results from Incoming High School Freshmen. 17th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2024 Bu-dapest, Hungary, October 28–30, 2024. 18-29. https://doi.org/10.1007/978-3-031-73474-8
Gupta, M. S. (2008). Learning methods of problem solving. IEEE Microwave Mag, 9(5), 134-148.
Guzdial, M. (2002). Programming Environments for Novices. Retrived from novice-envs2. pdf (umich. edu).
Hayes, J. C., & Kraemer, D. J. (2017). Grounded understanding of abstract concepts: The case of STEM learning. Cognitive research: principles and implications, 2, 1-15.
IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.
Kalyuga, S., Chandler, P., & Sweller, J. (2001). Learner experience and efficiency of instructional guidance. Educational Psychology, 21(1), 5-23.
Kolen, M. J. & Brennan, R.L. (2004). Test equating, scaling, and linking: Methods and practices (2nd ed.). New York: Springer-Verlag.
Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26(6), 737–749. https://doi.org/10.1177/0956797615569355
Lawanto, K., Close, K., Ames, C., & Brasiel, S. (2017). Exploring strengths and weak-nesses in middle school students’ computational thinking in scratch. Emerging research, practice, and policy on computational thinking, 307-326. https://doi.org/10.1007/978-3-319-52691-1_19
McDonald, C. (2018). Why is teaching programming difficult? In J. Carter, M. O'Grady, & C. Rosen (Eds.), Higher Education Computer Science (pp. 83–94). Springer. https://doi.org/10.1007/978-3-319-98590-9_6
Morrison, B. B., Margulieux, L. E., & Decker, A. (2020). The curious case of loops. Computer Science Education, 30(2), 127-154.
Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple representations in phys-ics and science education–why should we use them?. Multiple representations in physics education, 1-22.
Paas, F. G., & Van Merriënboer, J. J. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational psychology review, 6, 351-371.
R Core Team (2021). R: a language and environment for statistical computing. R 157 foundation for statistical computing, Vienna, Austria. https://www.Rproject.org/
Ramadhan, H. A. (2000). Programming by discovery. Journal of Computer Assisted Learning, 16(1), 83–93. https://doi.org/10.1046/j.1365-2729.2000.00118.x
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A Review and Discussion. Computer Science Education, 13(2), 137–172. https://doi.org/10.1076/csed.13.2.137.14200
Robins, A. V. (2019). 12 novice programmers and introductory programming. The Cambridge handbook of computing education research, 327-376.
Rodríguez del Rey, Y. A., Cawanga Cambinda, I. N., Deco, C., Bender, C., Avello‐Martínez, R., & Villalba‐Condori, K. O. (2021). Developing computational thinking with a module of solved problems. Computer Applications in Engineer-ing Education, 29(3), 506–516. https://doi.org/10.1002/cae.22214
Scratch Foundation. (2024). Scratch – Imagine, program, share. Retrieved December 30, 2024, from https://scratch.mit.edu/
Simanjuntak, M. P., Hutahaean, J., Marpaung, N., & Ramadhani, D. (2021). Effective-ness of problem-based learning combined with computer simulation on students' problem-solving and creative thinking skills. International Journal of Instruction, 14(3), 519–534. https://doi.org/10.29333/iji.2021.14330a
Suyatna, A., Anggraini, D., Agustina, D., & Widyastuti, D. (2017, November). The role of visual representation in physics learning: dynamic versus static visualization. In Journal of Physics: Conference Series (Vol. 909, No. 1, p. 012048). IOP Pub-lishing.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
Xinogalos, S. (2013, March). Using flowchart-based programming environments for simplifying programming and software engineering processes. In 2013 IEEE Global Engineering Education Conference (EDUCON) (pp. 1313-1322). IEEE.