研究生: |
劉靖達 Jing-Da Liu |
---|---|
論文名稱: |
利用電性量測分析太陽電池缺陷影響及鐵電之電場加強效率改善 Discussion of Defects in Solar Cells by Electrical Analysis and Efficiency Improvement with Electric Field Enhancement by Ferroelectric Material Passivation |
指導教授: |
李敏鴻
Lee, Min-Hung |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 銅銦鎵硒 、蕭基能障 、導納能譜 、異質接面太陽能電池 、鋯鈦酸鉛 |
英文關鍵詞: | CIGS, Schottky barrier, admittance spectroscopy, HIT solar cells, PZT |
論文種類: | 學術論文 |
相關次數: | 點閱:257 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的實驗分成三個部分。第一部分是研究MoSe2對銅銦鎵硒(CIGS)太陽電池電性的影響。首先我們以XRD、Van der Pauw法、反射光譜、以及SEM影像來探查MoSe2的存在。然後改變溫度環境,量測光電流以推算背電極的蕭基能障。因此,我們得知CIGS製程中產生的MoSe2可以最小化蕭基能障對太陽能電池的負面效應。
第二部分,利用導納能譜(admittance spectroscopy)量測,可以推算缺陷的活化能與缺陷的密度。由硒化溫度在450oC與550oC的CIGS太陽能電池顯示,不足的硒化溫度會使CIGS薄膜內存在過多的塊材缺陷,而降低太陽能電池的效率。當硒化溫度上升,塊材缺陷減少,因此我們量測到較高的效率與較低的缺陷活化能。
第三部分,嘗試製作結合鐵電材料鋯鈦酸鉛(PZT)的異質接面(HIT)太陽能電池。利用電子束蒸鍍將鐵電材料PZT蒸鍍至 HIT太陽能電池上,引入一個永久的內部電場,取代外加偏壓。第一次試製發現HIT太陽能電池的效率有顯著的提升。於是嘗試最佳化PZT薄膜的厚度,但是發現PZT並沒有產生極化電場,試製之HIT太陽能電池的效率只與電極有直接關係。
The first part of this thesis is about the electrical impact of MoSe2 on CIGS thin-film solar cells. Samples were characterized by XRD, the van der Pauw method, reflectance, and visual inspection. Then Schottky barrier heights of cells were extracted from J–V–T measurements. Therefore, the formation of MoSe2 during the CIGS process should minimize the negative effect of Schottky barrier on solar-cell performances, especially with large Schottky barrier.
In the second part, CIGS solar cells in different selenization temperature were compared. The relationship between basic solar-cell parameters and carrier-trapping states is explored through current-voltage, and admittance spectroscopy (AS). CIGS solar cells with selenization temperature at 550oC have higher efficiency and lower defect activation energies than cells with lower selenization temperatures.
In final part, we attend to incorporate a ferroelectric polymer layer into HIT solar cells. The ferroelectric material PZT was deposited on HIT solar cells by electron beam Evaporator. The polarization electric field induced by PZT would reduce the recombination of electrons and holes in semiconductors, eliminate the need for an external bias. In the first try, we found the efficiency on HIT solar cells have improvement. Then we try to find the thick of PZT with best performance. But we didn’t find any polarization in HIT solar cell. The performance relate to the Al contact directly.
[1]M. Igalson, C. Platzer-Bjorkman, “Defect states in the CIGS solar cells by photocapacitance and deep level optical spectroscopy,” Sol. Energy Mater. Sol. Cells, vol. 84, pp. 93, 2004
[2]A. Sinton, A. Cuevas, and M. Stuckings, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization,” Proc. 25th IEEE Photovoltaic Specialists Conf., pp.457 -460 1996
[3]D. V. Lang, “Deep‐level transient spectroscopy: A new method to characterize traps in semiconductors,” J. Appl. Phys., vol.45, pp. 3023, 1974.
[4]P. E. Russell, O. Jamjoum, R. K. Ahrenkiel, L. L. Kazmerski, R. A. Mickelsen and W. S. Chen, “Properties of Mo-CuInSe2 interface,” Appl. Phys. Lett, vol. 40, no. 11, pp. 995, 1982.
[5]J. J. Scragg, J. T. Watjen, M. Edoff, T. Ericson, T. Kubart and C. Platzer-Bjorkman, J. Am. Chem. “A Detrimental Reaction at the Molybdenum Back Contact in Cu2ZnSn(S,Se)4 Thin-Film Solar Cells,” J. Am. Chem. Soc., vol. no. 13447, pp. 19330–19333, 2012.
[6]T. Wada, N. Kohara, T. Negami and M. Nishitani, “Chemical and Structural Characterization of Cu(In,Ga)Se2/Mo Interface in Cu(In,Ga)Se2 Solar Cells,” Jpn. J.Appl. Phys., vol. 35, pp. L1253, 1996.
[7]T. Wada, N. Kohara, S. Nishiwaki and T. Negami, “Characterization of the Cu(In,Ga)Se2 ,” Thin Solid Films, vol. 387, pp. 118–122, 2001.
[8]D. A. Keszler and J. F. Wager, “Novel Materials Development for Polycrystalline Thin-Film Solar Cells: Final Subcontract Report,” 2008.
[9]S. Nishiwaki, N. Kohara, T. Negami and T. Wada, “Preparation and Characteristics of MoSe2 Interlayer in Bifacial Cu(In,Ga) Se2 solar cells,” Jpn. J. Appl. Phys., Part 2, vol. 37, pp. L71, 1998
[10]N. Kohara, S. Nishiwak, Y. Hashimoto, T. Negam and T. Wada,” Preparation and Characteristics of MoSe2 Interlayer in Bifacial Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells, vol. 67, pp. 209–215, 2001.
[11]T. Wada, “Microstructural Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS Solar cells,” Sol. Energy Mater. Sol. Cells, vol. 49, pp. 249–260, 1997.
[12]S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya,S. Ishizuka and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovoltaics, 18, pp.453–466, 2010
[13]T. Nakada and A. Kunioka, “Sequential Sputtering / Selenization Technique for the Growth of CuInSe2 Thin Films,” Jpn. J. Appl. Phys., vol. 37, pp. L1065–L1067, 1998.
[14]L. J. van der Pauw, Philips, “A numerical analysis of various cross sheet resistor test structures,” Philips Tech. Rev., vol. 20, pp. 220–224, 1958.
[15]D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F. V. Kurdesau, A. N. Tiwari and M. Dobeli, “Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells,” Thin Solid Films, vol. 480–481, pp. 433–438, 2005.
[16]U. Rau and H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells – recent achievements, current understanding, and future challenges,” Appl. Phys. A: Mater. Sci. Process., vol. 69, pp. 131, 1999.
[17]A. Jasenek, U. Rau, V. Nadenau, D. Thiess, and H. W. Schock, “Electronically active defects in CuGaSe2-based heterojunction solar cells,” Thin Solid Films, vol. 361-362, pp. 415, 2000.
[18]M. Burgelmann et al., “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin-film solar cells,” Prog. Photovoltaics 5, pp. 121, 1997.
[19]F. S. Hasoon, Y. Yan, H. Althani, K. M. Jones, H. R. Moutinho, J. Alleman, M. M. Al-Jassim, R. Noufi, “Microstructural Properties of Cu(In,Ga)Se2 Thin Films Used In High Efficiency Devices,” Thin Solid Films, vol. 387, pp.1 , 2001.
[20]A. S. Grove, “Physics and Technology of Semiconductor Devices,” John Wiley and Sons, 1967.
[21]R. Herberholz, M. Igalson, and H. W. Schock, “Distinction between bulk and interface states in CuInSe2/CdS/ZnO by space charge spectroscopy,” J. Appl. Phys., vol. 83, pp. 318, 1998.
[22]G. Hanna, A. Jasenek, U. Rau, and H. W. Schock, “Variation of Carrier Removal Rate with Irradiation Dose in Fast-Pile Neutron Irradiated n-Si,” Phys. Status Solidi A, vol. 179, pages 179–188, 2000.
[23]G. Hanna, A. Jasenek, U. Rau, and H.W. Schock, “Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2,” Thin Solid Films, vol. 387, pp. 71, 2001.
[24]M. Schmitt, U. Rau, and J. Parisi, “Charge carrier transport via defect states in Cu(In,Ga)Se2 thin films and Cu(In,Ga)Se2/CdS/ZnO heterojunctions,” Phys. Rev. B, vol. 61, pp. 16052, 2000.
[25]T. Walter, R. Herberholz, C. Muller, and H. W. Schock, “Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions,” J. Appl. Phys., vol. 80, pp. 4411. 1996.
[26]M. Igalson and H. W. Schock, “The metastable changes of the trap spectra of CuInSe2‐based photovoltaic devices”, J. Appl. Phys., vol. 80, pp. 5765, 1996.
[27]M. Turcu, I. M. Kötschau, and U. Rau, “Composition dependence of defect energies and band alignments in the Cu(In1−xGax) (Se1−ySy)2 alloy system”, J. Appl. Phys., vol. 91, pp.1391, 2002.
[28]S. B. Zhang, S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57, pp. 9642, 1998.
[29]J. T. Heath, “Electronic Transitions in the Bandgap of Copper Indium Gallium DiselenidePolycrystalline Thin Films,” PhD thesis, University of Oregon, 2002.
[30]T. Walter, R. Herberholz, C. Müller, and H. W. Schock, “Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions”, J. Appl. Phys., vol. 80, pp. 4411, 1996.
[31]D. V. Lang, J. D. Cohen, and J. P. Harbison, “Measurement of the density of gap states in hydrogenated amorphous silicon by space charge spectroscopy”, Phys. Rev. B, vol. 25, pp. 5285, 1982.
[32]J. E. Phillips, R. W. Birkmire, B. E. McCandless, P. V. Meyers and W. N. Shafarman, “Polycrystalline heterojunction solar cells: A device perspective,” Phys. Stat. Sol. (b), vol. 194, no. 1 , pp. 31–39, 1996.
[33]M Turcu, O Pakma, U Rau, “Interdependence of absorber composition and recombination mechanism in Cu (In, Ga)(Se, S) 2 heterojunction solar cells,” Appl. Phys. Lett., vol. 80, no. 14, pp. 2598-2600, 2002.
[34]J. L. Gray, “Handbook of Photovoltaic Science and Engineering,” Ch.3, John Wiley & Sons, Ltd., Chichester, West Sussex, U.K., pp. 82-129, 2011.
[35]J.H. Scofield, “Effects of series resistance and inductance on solar cell admittance measurements,” Sol. Cells, 37, pp. 217, 1995.
[36]C. H. Wu, F. S. Chen, S. H. Lin, C. H. Lu, “Characterization of Cu(In,Ga)Se2 thin films prepared via a sputtering route with a following selenization process,” Ceramic International, vol. 39, pp. 3393-3397, 2013.
[37] P. Paruch, T. Giamarchi, T. Tybell, and J. M. Triscone, “Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films,” J. Appl. Phys., vol. 100, pp. 051608, 2006.
[38]S. Salahuddin, and S. Datta, ‘‘Can the subthreshold swing in a classical FET be lowered below 60 mV/decade,” in IEDM Tech. Dig., pp. 693-696, 2008.
[39]S. Salahuddin and S. Datta, “Use of Negative Capacitance to ProvideVoltage Amplification for Low PowerNanoscale Devices,” Nano Lett., Vol. 8, No. 2, pp. 405-410, 2008.
[40]A. V. Bune,V. M. Fridkin, Stephen Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, and A. Zlatkin, “Two-dimensional ferroelectric films,” Nature, vol. 391, pp. 874-877, 1998
[41]Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, ‘‘Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nature Mat., pp. 2951, 2011.
[42]F. Liu, W. Wang, L. Wang, G. Yang, “Ferroelectric-semiconductor photovoltaics: Non-PN junction solar cells,” App. Phy. Lett., Vol.104, Iss. 10, 103907, 2014