研究生: |
賴銀豐 Lai, Yin-Feng |
---|---|
論文名稱: |
攝取冷飲對Yo-Yo間歇耐力測驗表現之影響 Effects of Cold Water Ingestion on Yo-Yo Intermittent Endurance Test Performance |
指導教授: |
鄭景峰
Cheng, Ching-Feng |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 核心溫度 、停與衝 、近紅外線光譜儀 (NIRS) 、運動增補劑 |
英文關鍵詞: | core temperature, stop-and-go, NIRS, ergogenic aids |
DOI URL: | https://doi.org/10.6345/NTNU202204926 |
論文種類: | 學術論文 |
相關次數: | 點閱:328 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:本研究旨在探討運動前攝取冷飲對隨後Yo-Yo間歇耐力測驗表現與相關生理指標之影響。方法:本研究招募12名大專甲組男性籃球選手為研究對象。採重複量數、平衡次序之實驗設計,讓受試者分別接受2種不同實驗處理:運動前30分鐘內攝取冷水 (7.5 ml·kg-1、4 °C;冷水處理) 或溫水 (7.5 ml·kg-1、37 °C;溫水處理) 。藉以觀測攝取冷飲對Yo-Yo間歇耐力測驗表現,以及核心溫度 (core temperature, CT) 、心跳率 (heart rate, HR) 、運動自覺努力程度 (rating of perceived exertion, RPE) 、溫度感覺 (temperature sensation, TS) 和肌肉氧飽和度 (muscle oxygen saturation) 等生理指標之影響。實驗時蒐集之資料以四分差之方式進行分析。結果:攝取冷飲未能顯著提升Yo-Yo間歇耐力測驗表現、心跳率和運動自覺努力程度 (p > .05) ,但能夠顯著降低攝取時第4時間區段 (冷水 vs. 溫水,36.8 ± 0.2 °C vs. 37.1 ± 0.3 °C,p < .05) 及運動中第1和第2時間區段的核心溫度 (冷水 vs. 溫水,第1時間區段,36.8 ± 0.2 °C vs. 37.1 ± 0.3 °C,p < .05;第2時間區段,37.2 ± 0.1 °C vs. 37.4 ± 0.3 °C,p < .05) ,以及顯著擴大攝取時的核心溫度下降幅度 (冷水 vs. 溫水,-0.38 ± 0.07 % vs. -0.04 ± 0.07 %,p < .05) 和縮小運動時的核心溫度上升幅度 (冷水 vs. 溫水,1.02 ± 0.19 % vs. 1.44 ± 0.13 %,p < .05) 。此外,攝取冷飲也能顯著降低運動前的溫度感覺 (冷水 vs. 溫水,2.6 ± 1.4分 vs. 3.7 ± 0.5分,p < .05) ,以及顯著縮小運動中肌肉總血紅素之下降幅度 (冷水 vs. 溫水,-2.8 ± 1.5 µmol vs. -9.1 ± 2.8 µmol,p < .05) 。結論:在運動前30分鐘內攝取冷飲 (7.5 ml·kg-1、4 °C) 可以降低核心溫度、溫度感覺和運動中肌肉總血紅素之下降幅度,但可能無法促進受過良好訓練運動員的高強度間歇運動表現。
Purpose: To investigate the effects of cold water ingestion before exercise on Yo-Yo Intermittent Endurance Test Level 1 (Yo-Yo IE1) performance and physiological responses. Methods: Twelve Division I collegiate basketball players were recruited, and completed cold (4 °C) and warm (37 °C) water ingestion trials in randomized, counter-balanced order. In each trial, each participant drank cold or warm water (7.5 ml·kg-1) within 30-min before the Yo-Yo IE1 test. The core temperature (CT), heart rate (HR), rating of perceived exertion (RPE), temperature sensation (TS), and muscle oxygen saturation were recorded during the drinking period and Yo-Yo test. The collected data from the drinking and exercise periods were divided into 4 quarters (Q1 to Q4), respectively. Results: There were no significant differences in Yo-Yo IE1 test performance, HR and RPE between trials (p > .05). The CT at Q4 of drinking period was significantly lower in cold trial (cold vs. warm, 36.8 ± 0.2 °C vs. 37.1 ± 0.3 °C, p < .05). The CT at Q1 (cold vs. warm, 36.8 ± 0.2 °C vs. 37.1 ± 0.3 °C) and Q2 (cold vs. warm, 37.2 ± 0.1 °C vs. 37.4 ± 0.3 °C) of exercise period was significantly lower in cold trial (p < .05). The magnitude of decreases in CT during drinking period was significantly greater in cold trial (cold vs. warm, -0.38 ± 0.07 % vs. -0.04 ± 0.07 %, p < .05). The magnitude of increases in CT during exercise period was significantly smaller in cold trial (cold vs. warm, 1.02 ± 0.19 % vs. 1.44 ± 0.13 %, p < .05). The TS before exercise test was significantly lower in cold trial (cold vs. warm, 2.6 ± 1.4 vs. 3.7 ± 0.5, p < .05). The changes in total hemoglobin (tHb) during exercise period was significantly smaller in cold trial (cold vs. warm, -2.8 ± 1.5 µmol vs. -9.1 ± 2.8 µmol, p < .05). Conclusion: Cold water (7.5 ml·kg-1, 4 °C) ingestion within 30-min before exercise might decrease CT, TS and changes in tHb, however, it might not improve high-intensity intermittent exercise performance in well-trained athletes.
Armstrong, L. E., Hubbard, R. W., Szlyk, P. C., Matthew, W. T., & Sils, I. V. (1985). Voluntary dehydration and electrolyte losses during prolonged exercise in the heat. Aviation, Space, and Environmental Medicine, 56(8), 765-770.
Bangsbo, J. (1996). Yo-yo Test. Ancona: Kells.
Barker, A. R., Bond, B., Toman, C., Williams, C. A., & Armstrong, N. (2012). Critical power in adolescents: Physiological bases and assessment using all-out exercise. European Journal of Applied Physiology, 112(4), 1359-1370.
Booth, J., Marino, F., & Ward, J. J. (1997). Improved running performance in hot humid conditions following whole body precooling. Medicine and Science in Sports and Exercise, 29(7), 943-949.
Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2), 92-98.
Brade, C., Dawson, B., & Wallman, K. (2013). Effect of pre-cooling on repeat-sprint performance in seasonally acclimatised males during an outdoor simulated team-sport protocol in warm conditions. Journal of Sports Science and Medicine, 12(3), 565-570.
Brade, C., Dawson, B., & Wallman, K. (2014). Effects of different precooling techniques on repeat sprint ability in team sport athletes. European Journal of Sport Science, 14(Suppl 1), S84-S91.
Buchheit, M., & Ufland, P. (2011). Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. European Journal of Applied Physiology, 111(2), 293-301.
Burdon, C., O'Connor, H., Gifford, J., Shirreffs, S., Chapman, P., & Johnson, N. (2010). Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions. Journal of Sports Sciences, 28(11), 1147-1156.
Byrne, C., & Lim, C. L. (2007). The ingestible telemetric body core temperature sensor: A review of validity and exercise applications. British Journal of Sports Medicine, 41(3), 126-133.
Byrne, C., Owen, C., Cosnefroy, A., & Lee, J. K. (2011). Self-paced exercise performance in the heat after pre-exercise cold-fluid ingestion. Journal of Athletic Training, 46(6), 592-599.
Castagna, C., Impellizzeri, F. M., Belardinelli, R., Abt, G., Coutts, A., Chamari, K., & D'Ottavio, S. (2006). Cardiorespiratory responses to Yo-yo Intermittent Endurance Test in nonelite youth soccer players. The Journal of Strength and Conditioning Research, 20(2), 326-330.
Cheung, S. S. (2007). Neuropsychological determinants of exercise tolerance in the heat. Progress in Brain Research, 162, 45-60.
Cheng, C. F., Tong, T. K., Kuo, Y. C., Chen, P. H., Huang, H. W., & Lee, C. L. (2013). Inspiratory muscle warm-up attenuates muscle deoxygenation during cycling exercise in women athletes. Respiratory Physiology and Neurobiology, 186(3), 296-302.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, N.J.: Lawrence Erlbaum.
Convertino, V. A., Armstrong, L. E., Coyle, E. F., Mack, G. W., Sawka, M. N., Senay, L. C. Jr., Sherman, W. M. (1996). American College of Sports Medicine position stand. Exercise and fluid replacement. Medicine and Science in Sports and Exercise, 28, i-vii.
Cotter, J. D., Sleivert, G. G., Roberts, W. S., & Febbraio, M. A. (2001). Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 128(4), 667-677.
Ferrete, C., Requena, B., Suarez-Arrones, L., & de Villarreal, E. S. (2014). Effect of strength and high-intensity training on jumping, sprinting, and intermittent endurance performance in prepubertal soccer players. The Journal of Strength and Conditioning Research, 28(2), 413-422.
Fernandes, L., Krustrup, P., Silva, G., Rebelo, A., Oliveira, J., & Brito, J. (2015). Yo-Yo Intermittent Endurance Test-Level 1 to monitor changes in aerobic fitness in pre-pubertal boys. European Journal of Sport Science, 22, 1-6.
González-Alonso, J., Teller, C., Andersen, S. L., Jensen, F. B., Hyldig, T., & Nielsen, B. (1999). Influence of body temperature on the development of fatigue during prolonged exercise in the heat. Journal of Applied Physiology, 86(3), 1032-1039.
Hasegawa, H., Takatori, T., Komura, T., & Yamasaki, M. (2006). Combined effects of pre-cooling and water ingestion on thermoregulation and physical capacity during exercise in a hot environment. Journal of Sports Sciences, 24(1), 3-9.
Hom, C., Vasquez, P., & Pozos, R. S. (2004). Peripheral skin temperature effects on muscle oxygen levels. Journal of Thermal Biology, 29(7), 785-789.
Ihsan, M., Landers, G., Brearley, M., & Peeling, P. (2010). Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. International Journal of Sports Physiology and Performance, 5(2), 140-151.
Kay, D., Taaffe, D. R., & Marino, F. E. (1999). Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions. Journal of Sports Science, 17(12), 937-944.
Lee, J. K., & Shirreffs, S. M. (2007). The influence of drink temperature on thermoregulatory responses during prolonged exercise in a moderate environment. Journal of Sports Science, 25(9), 975-985.
Lee, J. K., Maughan, R. J., & Shirreffs, S. M. (2008). The influence of serial feeding of drinks at different temperatures on thermoregulatory responses during cycling. Journal of Sports Sciences, 26(6), 583-590.
Lee, J. K., Shirreffs, S. M., & Maughan, R. J. (2008). Cold drink ingestion improves exercise endurance capacity in the heat. Medicine and Science in Sports and Exercise, 40(9), 1637-1644.
Marino, F. E. (2002). Methods, advantages, and limitations of body cooling for exercise performance. British Journal of Sports Medicine, 36(2), 89-94.
Marino, F. (2007). Evidence for anticipatory regulation mediated by drink temperature during fixed intensity exercise in the heat. Experimental Physiology, 92(2), 467-468.
Marsh, D., & Sleivert, G. (1999). Effect of precooling on high intensity cycling performance. British Journal of Sports Medicine, 33(6), 393-397.
Mündel, T., & Jones, D. A. (2010). The effects of swilling an L(-)-menthol solution during exercise in the heat. European Journal of Applied Physiology, 109(1), 59-65.
Mündel, T., King, J., Collacott, E., & Jones, D. A. (2006). Drink temperature influences fluid intake and endurance capacity in men during exercise in a hot, dry environment. Experimental Physiology, 91(5), 925-933.
Nadel, E. R., Pandolf, K. B., Roberts, M. F., & Stolwijk, J. A. (1974). Mechanisms of thermal acclimation to exercise and heat. Journal of Applied Physiology, 37(4), 515-520.
Noakes, T. (1993). Fluid replacement during exercise. Exercise and Sport Sciences Reviews, 21, 297-330.
Quod, M. J., Martin, D. T., & Laursen, P. B. (2006). Cooling athletes before competition in the heat: Comparison of techniques and practical considerations. Sports Medicine, 36(8), 671-682.
Ross, M., Abbiss, C., Laursen, P., Martin, D., & Burke, L. (2013). Precooling methods and their effects on athletic performance: A systematic review and practical applications. Sports Medicine, 43(3), 207-225.
Ross, M. L., Garvican, L. A., Jeacocke, N. A., Laursen, P. B., Abbiss, C. R., Martin, D. T., & Burke, L. M. (2011). Novel precooling strategy enhances time trial cycling in the heat. Medicine and Science in Sports and Exercise, 43(1), 123-133.
Shvartz, E., Shapiro, Y., Magazanik, A., Meroz, A., Birnfeld, H., Mechtinger, A., & Shibolet, S. (1977). Heat acclimation, physical fitness, and responses to exercise in temperate and hot environments. Journal of Applied Physiology: Respiratory, Environmental & Exercise Physiology, 43(4), 678-683.
Siegel, R., & Laursen, P. B. (2012). Keeping your cool: Possible mechanisms for enhanced exercise performance in the heat with internal cooling methods. Sports Medicine, 42(2), 89-98.
Siegel, R., Maté, J., Brearley, M. B., Watson, G., Nosaka, K., & Laursen, P. B. (2010). Ice slurry ingestion increases core temperature capacity and running time in the heat. Medicine and Science in Sports and Exercise, 42(4), 717-725.
Siegel, R., Maté, J., Watson, G., Nosaka, K., & Laursen, P. B. (2011). The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia. European Journal of Applied Physiology, 111(10), 2517-2524.
Siegel, R., Maté, J., Watson, G., Nosaka, K., & Laursen, P. B. (2012). Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. Journal of Sports Sciences, 30(2), 155-165.
Stanley, J., Leveritt, M., & Peake, J. M. (2010). Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat. European Journal of Applied Physiology, 110(6), 1163-1173.
Szlyk, P. C., Sils, I. V., Francesconi, R. P., Hubbard, R. W., & Armstrong, L. E. (1989). Effects of water temperature and flavoring on voluntary dehydration in men. Physiology and Behavior, 45(3), 639-647.
Takatori, T., Hasegawa, H., Yamasaki, M., & Komura, T. (2002). Effects of water ingestion interval on thermoregulatory responses during exercise in the heat. Japanese Journal of Physical Fitness and Sports Medicine, 51(3), 317-324.
Tew, G. A., Ruddock, A. D., & Saxton, J. M. (2010). Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise. European Journal of Applied Physiology, 110(5), 1083-1089.
Toner, M. M., Drolet, L. L., & Pandolf, K. B. (1986). Perceptual and physiological responses during exercise in cool and cold water. Perceptual and Motor Skills, 62(1), 211-220.
Wilkinson, D. M., Carter, J. M., Richmond, V. L., Blacker, S. D., & Rayson, M. P. (2008). The effect of cool water ingestion on gastrointestinal pill temperature. Medicine and Science in Sports and Exercise, 40(3), 523-528.
Wimer, G. S., Lamb, D. R., Sherman, W. M., & Swanson, S. C. (1997). Temperature of ingested water and thermoregulation during moderate-intensity exercise. Canadian Journal of Applied Physiology, 22(5), 479-493.
Yanagisawa, O., Homma, T., Okuwaki, T., Shimao, D., & Takahashi, H. (2007). Effects of cooling on human skin and skeletal muscle. European Journal of Applied Physiology, 100(6), 737-745.